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Summary

Describing the precision of parameters estimates

I In many ways the purpose of statistical analysis can be
considered as quantifying the variability in data and
determining how the variability affects the inferences that we
draw from it.

I Good statistical practice suggests, therefore, that we not only
provide our “best guess”, the point estimate of a parameter,
but also describe its precision (e.g. interval estimation).

I Some of the time (but not nearly as frequently as widely
believed) we also want to check whether a particular
parameter value is consistent with the data (i.e.. hypothesis
tests and p-values).

I In olden days it was necessary to do some rather coarse
approximations such as summarizing precision by the standard
error of the estimate or calculating a test statistic and
comparing it to a tabulated value to derive a 0/1 response of
“significant (or not) at the 5% level”.

Modern practice

I Our ability to do statistical computing has changed from the
“olden days”. Current hardware and software would have been
unimaginable when I began my career as a statistician. We
can work with huge data sets having complex structure and fit
sophisticated models to them quite easily.

I Regrettably, we still frequently quote the results of this
sophisticated modeling as point estimates, standard errors and
p-values.

I Understandably, the client (and the referees reading the
client’s paper) would like to have simple, easily understood
summaries so they can assess the analysis at a glance.
However, the desire for simple summaries of complex analyses
is not, by itself, enough to these summaries meaningful.

I We must not only provide sophisticated software for
statisticians and other researchers; we must also change their
thinking about summaries.



Summaries of mixed-effects models
I Commercial software for fitting mixed-effects models (SAS

PROC MIXED, SPSS, MLwin, HLM, Stata) provides
estimates of fixed-effects parameters, standard errors, degrees
of freedom and p-values. They also provide estimates of
variance components and standard errors of these estimates.

I The mixed-effects packages for R that I have written (nlme
with José Pinheiro and lme4 with Martin Mächler) do not
provide standard errors of variance components. lme4 doesn’t
even provide p-values for the fixed effects.

I This is a source of widespread anxiety. Many view it as an
indication of incompetence on the part of the developers
(“Why can’t lmer provide the p-values that I can easily get
from SAS?”)

I The 2007 book by West, Welch and Galecki shows how to use
all of these software packages to fit mixed-effects models on 5
different examples. Every time they provide comparative
tables they must add a footnote that lme doesn’t provide
standard errors of variance components.

What does a standard error tell us?

I Typically we use a standard error of a parameter estimate to
assess precision (e.g. a 95% confidence interval on µ is
roughly x̄± 2 s√

n
) or to form a test statistic (e.g. a test of

H0 : µ = 0 versus Ha : µ 6= 0 based on the statistic x̄
s/
√
n

).

I Such intervals or test statistics are meaningful when the
distribuion of the estimator is more-or-less symmetric.

I We would not, for example, quote a standard error of σ̂2

because we know that the distribution of this estimator, even
in the simplest case (the mythical i.i.d. sample from a
Gaussian distribution), is not at all symmetric. We use
quantiles of the χ2 distribution to create a confidence interval.

I Why, then, should we believe that when we create a much
more complex model the distribution of estimators of variance
components will magically become sufficiently symmetric for
standard errors to be meaningful?

Evaluating the deviance function
I The profiled deviance function for such a model can be

expressed as a function of 1 parameter only, the ratio of the
random effects’ standard deviation to the residual standard
deviation.

I A very brief explanation is based on the n-dimensional
response random variation, Y , whose value, y, is observed,
and the q-dimensional, unobserved random effects variable, B,
with distributions

(Y |B = b) ∼ N (Zb+Xβ, σ2In
)
, B ∼ N (0,Σθ) ,

I For our example, n = 30, q = 6, X is a 30× 1 matrix of 1s,
Z is the 30× 6 matrix of indicators of the levels of Batch and
Σ is σ2

bI6.
I We never really form Σθ; we always work with the relative

covariance factor, Λθ, defined so that

Σθ = σ2ΛθΛ
ᵀ
θ .

In our example θ = σb
σ and Λθ = θI6.

Orthogonal or “unit” random effects

I We will define a q-dimensional “spherical” or “unit”
random-effects vector, U , such that

U ∼ N (0, σ2Iq
)
, B = Λθ U ⇒ Var(B) = σ2ΛθΛ

ᵀ
θ = Σθ.

I The linear predictor expression becomes

Zb+Xβ = ZΛθ u+Xβ = Uθ u+Xβ

where Uθ = ZΛθ.
I The key to evaluating the log-likelihood is the Cholesky

factorization

LθL
ᵀ
θ = P

(
Uᵀ
θUθ + Iq

)
P ᵀ

(P is a fixed permutation that has practical importance but
can be ignored in theoretical derivations). The sparse,
lower-triangular Lθ can be evaluated and updated for new θ
even when q is in the millions and the model involves random
effects for several factors.



The profiled deviance
I The Cholesky factor, Lθ, allows evaluation of the conditional

mode ũθ,β (also the conditional mean for linear mixed
models) from(

Uᵀ
θUθ + Iq

)
ũθ,β = P ᵀLθL

ᵀ
θP ũθ,β = Uᵀ

θ (y −Xβ)

Let r2(θ,β) = ‖y −Xβ −Uθ ũθ,β‖2 + ‖ũθ,β‖2.
I `(θ,β, σ|y) = logL(θ,β, σ|y) can be written

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)
σ2

+ log(|Lθ|2)

I The conditional estimate of σ2 is

σ̂2(θ,β) =
r2(θ,β)

n

producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]

Profiling the deviance with respect to β

I Because the deviance depends on β only through r2(θ,β) we
can obtain the conditional estimate, β̂θ, by extending the PLS
problem to

r2(θ) = min
u,β

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
with the solution satisfying the equations[

Uᵀ
θUθ + Iq Uᵀ

θX
XᵀUθ XᵀX

] [
ũθ
β̂θ

]
=
[
Uᵀ
θ y

Xᵀy.

]
I The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ)

n

)]

Profiled deviance and its components

I For this simple model we can evaluate and plot the deviance
for a range of θ values. We also plot its components,

log(|Lθ|2) (ldL2) and n
[
1 + log

(
2πr2(θ)

n

)]
(lprss).

I lprss measures fidelity to the data. It is bounded above and
below. log(|Lθ|2) measures complexity of the model. It is
bounded below but not above.
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The MLE (or REML estimate) of σ2
b can be 0

I For some model/data set combinations the estimate of σ2
b is

zero. This occurs when the decrease in lprss as θ ↑ is not
sufficient to counteract the increase in the complexity,
log(|Lθ|2). The Dyestuff2 data from Box and Tiao (1973)
show this.

Simulated response (dimensionless)
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Components of the profiled deviance for Dyestuff2
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I For this data set the difference in the upper and lower bounds
on lprss is not sufficient to counteract the increase in
complexity of the model, as measured by log(|Lθ|2).

I Software should gracefully handle cases of σ2
b = 0 or, more

generally, Λθ being singular. This is not done well in the
commercial software.

I One of the big differences between inferences for σ2
b and those

for σ2 is the need to accomodate to do about values of σ2
b

that are zero or near zero.

Profiled deviance and REML criterion for σb and σ
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I The contours correspond to 2-dimensional marginal
confidence regions derived from a likelihood-ratio test.

I The dotted and dashed lines are the profile traces.

Profiling with respect to each parameter separately
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I These curves show the minimal deviance achieveable for a
value of one of the parameters, optimizing over all the other
parameters.

Profiled deviance of the variance components

I Recall that we have been working on the scale of the standard
deviations, σb and σ. On the scale of the variance, things look
worse.
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Square root of change in the profiled deviance

I The difference of the profiled deviance at the optimum and at
a particular value of σ or σb is the likelihood ratio test
statistic for that parameter value.

I If the use of a standard error, and the implied symmetric
intervals, is appropriate then this function should be quadratic
in the parameter and its square root should be like an
absolute value function.

I The assumption that the change in the deviance has a χ2
1

distribution is equivalent to saying that
√

LRT is the absolute
value of a standard normal.

I If we use the signed square root transformation, assigning
−√LRT to parameters to the left of the estimate and

√
LRT

to parameter values to the right, we should get a straight line
on a standard normal scale.

Plot of square root of LRT statistic
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Signed square root plot of LRT statistic
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Summary

I Summaries based on parameter estimates and standard errors
are appropriate when the distribution of the estimator can be
assumed to be reasonably symmetric.

I Estimators of variances do not tend to have a symmetric
distribution. If anything the scale of the log-variance (which is
a multiple of the log-standard deviation) would be the more
appropriate scale on which to assume symmetry.

I Estimators of variance components are more problematic
because they can take on the value of zero.

I Profiling the deviance and plotting the result can help to
visualize the precision of the estimates.


