Assessing the precision of estimates of variance components

Douglas Bates

University of Wisconsin - Madison and R Development Core Team <Douglas.Bates@R-project.org>

Max Planck Institute for Ornithology Seewiesen July 21, 2009

Describing the precision of parameters estimates

- ▶ In many ways the purpose of statistical analysis can be considered as quantifying the variability in data and determining how the variability affects the inferences that we draw from it.
- ▶ Good statistical practice suggests, therefore, that we not only provide our "best guess", the point estimate of a parameter, but also describe its precision (e.g. interval estimation).
- ▶ Some of the time (but not nearly as frequently as widely believed) we also want to check whether a particular parameter value is consistent with the data (i.e.. hypothesis tests and p-values).
- ▶ In olden days it was necessary to do some rather coarse approximations such as summarizing precision by the standard error of the estimate or calculating a test statistic and comparing it to a tabulated value to derive a 0/1 response of "significant (or not) at the 5% level".

Outline

Estimates and standard errors

Summarizing mixed-effects model fits

A brief overview of the theory and computation for mixed models

Profiled deviance as a function of θ

Summary

Modern practice

- Our ability to do statistical computing has changed from the "olden days". Current hardware and software would have been unimaginable when I began my career as a statistician. We can work with huge data sets having complex structure and fit sophisticated models to them quite easily.
- Regrettably, we still frequently quote the results of this sophisticated modeling as point estimates, standard errors and p-values.
- ▶ Understandably, the client (and the referees reading the client's paper) would like to have simple, easily understood summaries so they can assess the analysis at a glance. However, the desire for simple summaries of complex analyses is not, by itself, enough to these summaries meaningful.
- ▶ We must not only provide sophisticated software for statisticians and other researchers; we must also change their thinking about summaries.

Summaries of mixed-effects models

- ➤ Commercial software for fitting mixed-effects models (SAS PROC MIXED, SPSS, MLwin, HLM, Stata) provides estimates of fixed-effects parameters, standard errors, degrees of freedom and p-values. They also provide estimates of variance components and standard errors of these estimates.
- ➤ The mixed-effects packages for R that I have written (nlme with José Pinheiro and lme4 with Martin Mächler) do not provide standard errors of variance components. lme4 doesn't even provide p-values for the fixed effects.
- ➤ This is a source of widespread anxiety. Many view it as an indication of incompetence on the part of the developers ("Why can't Imer provide the p-values that I can easily get from SAS?")
- ► The 2007 book by West, Welch and Galecki shows how to use all of these software packages to fit mixed-effects models on 5 different examples. Every time they provide comparative tables they must add a footnote that 1me doesn't provide standard errors of variance components.

Evaluating the deviance function

- ➤ The *profiled deviance* function for such a model can be expressed as a function of 1 parameter only, the ratio of the random effects' standard deviation to the residual standard deviation.
- A very brief explanation is based on the n-dimensional response random variation, \mathcal{Y} , whose value, y, is observed, and the q-dimensional, unobserved random effects variable, \mathcal{B} , with distributions

$$(\mathcal{oldsymbol{\mathcal{Y}}}|oldsymbol{\mathcal{B}}=oldsymbol{b})\sim\mathcal{N}\left(oldsymbol{Z}oldsymbol{b}+oldsymbol{X}oldsymbol{eta},\sigma^2oldsymbol{I}_n
ight),\quadoldsymbol{\mathcal{B}}\sim\mathcal{N}\left(oldsymbol{0},oldsymbol{\Sigma}_{ heta}
ight),$$

- ▶ For our example, n = 30, q = 6, X is a 30×1 matrix of 1s, Z is the 30×6 matrix of indicators of the levels of Batch and Σ is $\sigma_b^2 I_6$.
- We never really form Σ_{θ} ; we always work with the *relative* covariance factor, Λ_{θ} , defined so that

$$\Sigma_{\theta} = \sigma^2 \Lambda_{\theta} \Lambda_{\theta}^{\mathsf{T}}.$$

In our example $\theta = \frac{\sigma_b}{\sigma}$ and $\Lambda_{\theta} = \theta I_6$.

What does a standard error tell us?

- ▶ Typically we use a standard error of a parameter estimate to assess precision (e.g. a 95% confidence interval on μ is roughly $\bar{x} \pm 2\frac{s}{\sqrt{n}}$) or to form a test statistic (e.g. a test of $H_0: \mu = 0$ versus $H_a: \mu \neq 0$ based on the statistic $\frac{\bar{x}}{s/\sqrt{n}}$).
- ► Such intervals or test statistics are meaningful when the distribuion of the estimator is more-or-less symmetric.
- We would not, for example, quote a standard error of $\widehat{\sigma^2}$ because we know that the distribution of this estimator, even in the simplest case (the mythical i.i.d. sample from a Gaussian distribution), is not at all symmetric. We use quantiles of the χ^2 distribution to create a confidence interval.
- ▶ Why, then, should we believe that when we create a much more complex model the distribution of estimators of variance components will magically become sufficiently symmetric for standard errors to be meaningful?

Orthogonal or "unit" random effects

We will define a q-dimensional "spherical" or "unit" random-effects vector, \mathcal{U} , such that

$$\mathcal{U} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}_q\right), \ \mathcal{B} = \mathbf{\Lambda}_{\theta} \, \mathcal{U} \Rightarrow \mathsf{Var}(\mathcal{B}) = \sigma^2 \mathbf{\Lambda}_{\theta} \mathbf{\Lambda}_{\theta}^{\intercal} = \mathbf{\Sigma}_{\theta}.$$

► The linear predictor expression becomes

$$oldsymbol{Z} oldsymbol{b} + oldsymbol{X}oldsymbol{eta} = oldsymbol{Z}oldsymbol{\Lambda}_{ heta}\,oldsymbol{u} + oldsymbol{X}oldsymbol{eta} = oldsymbol{U}_{ heta}\,oldsymbol{u} + oldsymbol{X}oldsymbol{eta}$$

where $oldsymbol{U}_{ heta} = oldsymbol{Z} oldsymbol{\Lambda}_{ heta}.$

► The key to evaluating the log-likelihood is the Cholesky factorization

$$oldsymbol{L}_{ heta} oldsymbol{L}_{ heta}^{\intercal} = oldsymbol{P} \left(oldsymbol{U}_{ heta}^{\intercal} oldsymbol{U}_{ heta} + oldsymbol{I}_{q}
ight) oldsymbol{P}^{\intercal}$$

(P is a fixed permutation that has practical importance but can be ignored in theoretical derivations). The sparse, lower-triangular L_{θ} can be evaluated and updated for new θ even when q is in the millions and the model involves random effects for several factors.

The profiled deviance

▶ The Cholesky factor, L_{θ} , allows evaluation of the conditional mode $\tilde{u}_{\theta,\beta}$ (also the conditional mean for linear mixed models) from

$$egin{split} \left(oldsymbol{U}_{ heta}^\intercal oldsymbol{U}_{ heta} + oldsymbol{I}_q
ight) ilde{oldsymbol{u}}_{ heta,eta} = oldsymbol{P}^\intercal oldsymbol{L}_{ heta} oldsymbol{L}_{ heta}^\intercal oldsymbol{P} ilde{oldsymbol{u}}_{ heta,eta} = oldsymbol{U}_{ heta}^\intercal (oldsymbol{y} - oldsymbol{X}oldsymbol{eta}) \end{split}$$

Let
$$r^2(\boldsymbol{ heta}, oldsymbol{eta}) = \| oldsymbol{y} - oldsymbol{X} oldsymbol{eta} - oldsymbol{U}_{ heta} \, ilde{oldsymbol{u}}_{ heta, eta} \|^2 + \| ilde{oldsymbol{u}}_{ heta, eta} \|^2.$$

• $\ell(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}) = \log L(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y})$ can be written

$$-2\ell(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}) = n \log(2\pi\sigma^2) + \frac{r^2(\boldsymbol{\theta}, \boldsymbol{\beta})}{\sigma^2} + \log(|\boldsymbol{L}_{\theta}|^2)$$

▶ The conditional estimate of σ^2 is

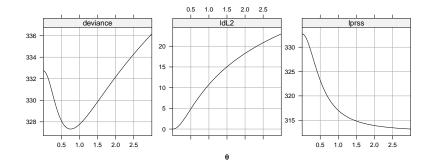
$$\widehat{\sigma^2}(\boldsymbol{\theta}, \boldsymbol{\beta}) = \frac{r^2(\boldsymbol{\theta}, \boldsymbol{\beta})}{n}$$

producing the profiled deviance

$$-2\tilde{\ell}(\boldsymbol{\theta}, \boldsymbol{\beta}|\boldsymbol{y}) = \log(|\boldsymbol{L}_{\boldsymbol{\theta}}|^2) + n \left[1 + \log\left(\frac{2\pi r^2(\boldsymbol{\theta}, \boldsymbol{\beta})}{n}\right) \right]$$

Profiled deviance and its components

- For this simple model we can evaluate and plot the deviance for a range of θ values. We also plot its components, $\log(|\boldsymbol{L}_{\theta}|^2)$ (1dL2) and $n\left[1+\log\left(\frac{2\pi r^2(\theta)}{n}\right)\right]$ (1prss).
- ▶ lprss measures fidelity to the data. It is bounded above and below. $\log(|\mathbf{L}_{\theta}|^2)$ measures complexity of the model. It is bounded below but not above.



Profiling the deviance with respect to β

▶ Because the deviance depends on β only through $r^2(\theta, \beta)$ we can obtain the conditional estimate, $\widehat{\beta}_{\theta}$, by extending the PLS problem to

$$r^2(oldsymbol{ heta}) = \min_{oldsymbol{u}, oldsymbol{eta}} \left[\|oldsymbol{y} - oldsymbol{X}oldsymbol{eta} - oldsymbol{U}_{ heta} \, oldsymbol{u} \|^2 + \|oldsymbol{u}\|^2
ight]$$

with the solution satisfying the equations

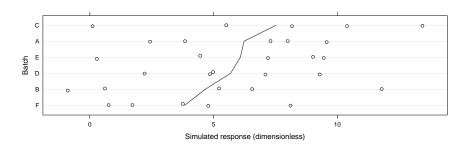
$$egin{bmatrix} egin{bmatrix} m{U}_{ heta}^{\intercal}m{U}_{ heta} + m{I}_q & m{U}_{ heta}^{\intercal}m{X} \ m{X}^{\intercal}m{U}_{ heta} & m{X}^{\intercal}m{X} \end{bmatrix} egin{bmatrix} ilde{u}_{ heta} \ ar{eta}_{ heta} \end{bmatrix} = egin{bmatrix} m{U}_{ heta}^{\intercal}m{y} \ m{X}^{\intercal}m{y}. \end{bmatrix}$$

ightharpoonup The profiled deviance, which is a function of heta only, is

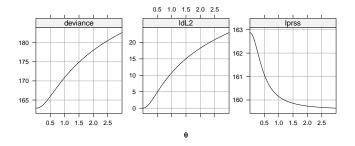
$$-2\tilde{\ell}(\boldsymbol{\theta}) = \log(|\boldsymbol{L}_{\boldsymbol{\theta}}|^2) + n \left[1 + \log\left(\frac{2\pi r^2(\boldsymbol{\theta})}{n}\right) \right]$$

The MLE (or REML estimate) of σ_b^2 can be 0

For some model/data set combinations the estimate of σ_b^2 is zero. This occurs when the decrease in lprss as $\theta \uparrow$ is not sufficient to counteract the increase in the complexity, $\log(|\boldsymbol{L}_{\theta}|^2)$. The Dyestuff2 data from Box and Tiao (1973) show this.

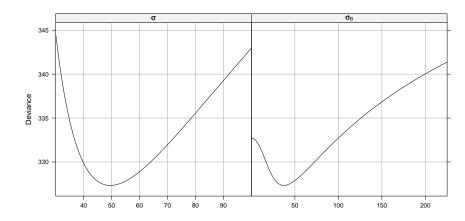


Components of the profiled deviance for Dyestuff2



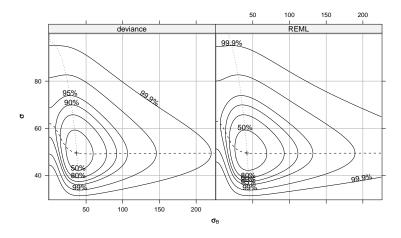
- ► For this data set the difference in the upper and lower bounds on lprss is not sufficient to counteract the increase in complexity of the model, as measured by $\log(|\mathbf{L}_{\theta}|^2)$.
- ▶ Software should gracefully handle cases of $\sigma_b^2 = 0$ or, more generally, Λ_θ being singular. This is not done well in the commercial software.
- One of the big differences between inferences for σ_b^2 and those for σ^2 is the need to accommodate to do about values of σ_b^2 that are zero or near zero.

Profiling with respect to each parameter separately



► These curves show the minimal deviance achieveable for a value of one of the parameters, optimizing over all the other parameters.

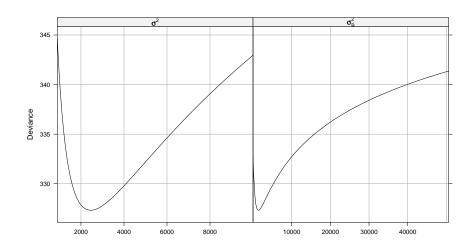
Profiled deviance and REML criterion for σ_b and σ



- ► The contours correspond to 2-dimensional marginal confidence regions derived from a likelihood-ratio test.
- ▶ The dotted and dashed lines are the profile traces.

Profiled deviance of the variance components

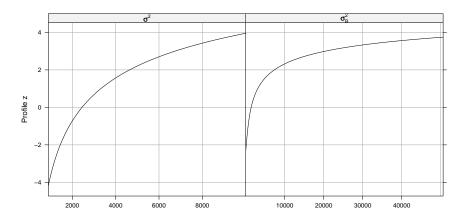
▶ Recall that we have been working on the scale of the standard deviations, σ_b and σ . On the scale of the variance, things look worse.



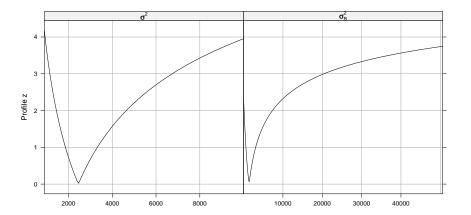
Square root of change in the profiled deviance

- ▶ The difference of the profiled deviance at the optimum and at a particular value of σ or σ_b is the likelihood ratio test statistic for that parameter value.
- ▶ If the use of a standard error, and the implied symmetric intervals, is appropriate then this function should be quadratic in the parameter and its square root should be like an absolute value function.
- ▶ The assumption that the change in the deviance has a χ^2_1 distribution is equivalent to saying that $\sqrt{\mathsf{LRT}}$ is the absolute value of a standard normal.
- If we use the *signed square root* transformation, assigning $-\sqrt{\text{LRT}}$ to parameters to the left of the estimate and $\sqrt{\text{LRT}}$ to parameter values to the right, we should get a straight line on a standard normal scale.

Signed square root plot of LRT statistic



Plot of square root of LRT statistic



Summary

- ▶ Summaries based on parameter estimates and standard errors are appropriate when the distribution of the estimator can be assumed to be reasonably symmetric.
- ▶ Estimators of variances do not tend to have a symmetric distribution. If anything the scale of the log-variance (which is a multiple of the log-standard deviation) would be the more appropriate scale on which to assume symmetry.
- ► Estimators of variance components are more problematic because they can take on the value of zero.
- ▶ Profiling the deviance and plotting the result can help to visualize the precision of the estimates.