
Mixed models in R using the lme4 package

Part 1: Introduction to R

Douglas Bates

Merck, Rahway, NJ
Sept 23, 2010

Contents

1 Web site 1

2 Data 2

3 Variables 4

4 Subsets 6

1 Web site and following the R code

Web sites associated with the tutorial

www.R-project.org Main web site for the R Project

cran.R-project.org Comprehensive R Archive Network primary site

cran.us.R-project.org Main U.S. mirror for CRAN

R-forge.R-project.org R-Forge, development site for many public R packages. This is also
the URL of the repository for installing the development versions of the lme4 and Matrix

packages, if you are so inclined.

lme4.R-forge.R-project.org development site for the lme4 package

lme4.R-forge.R-project.org/slides/2010-09-23-Rahway web site for this short course

Following the operations on the slides

• The lines of R code shown on these slides are available in files on the course web site.
The file for this section is called 1Intro.R.

• If you open this file in the R application (the File→Open menu item or <ctrl>-O) and
position the cursor at a particular line, then <ctrl>-R will send the line to the console
window for execution and step to the next line.

• Any part of a line following a # symbol is a comment.

1

• The code is divided into named “chunks”, typically one chunk per slide that contains
code.

• In the system called Sweave used to generate the slides the result of a call to a graphics
function must be printed. In interactive use this is not necessary but neither is it
harmful.

2 Organizing data

Organizing data in R

• Standard rectangular data sets (columns are variables, rows are observations) are stored
in R as data frames.

• The columns can be numeric variables (e.g. measurements or counts) or factor variables
(categorical data) or ordered factor variables. These types are called the class of the
variable.

• The str function provides a concise description of the structure of a data set (or any
other class of object in R). The summary function summarizes each variable according to
its class. Both are highly recommended for routine use.

• Entering just the name of the data frame causes it to be printed. For large data frames
use the head and tail functions to view the first few or last few rows.

Data input

• The simplest way to input a rectangular data set is to save it as a comma-separated value
(csv) file and read it with read.csv.

• The first argument to read.csv is the name of the file. On Windows it can be tricky
to get the file path correct (backslashes need to be doubled). The best approach is to
use the function file.choose which brings up a “chooser” panel through which you can
select a particular file. The idiom to remember is

> mydata <- read.csv(file.choose ())

for comma-separated value files or

> mydata <- read.delim(file.choose ())

for files with tab-delimited data fields.

• If you are connected to the Internet you can use a URL (within quotes) as the first
argument to read.csv or read.delim. (See question 1 in the first set of exercises)

In-built data sets

• One of the packages attached by default to an R session is the datasets package that
contains several data sets culled primarily from introductory statistics texts.

• We will use some of these data sets for illustration.

2

• The Formaldehyde data are from a calibration experiment, Insectsprays are from an
experiment on the effectiveness of insecticides.

• Use ? followed by the name of a function or data set to view its documentation. If
the documentation contains an example section, you can execute it with the example

function.

The Formaldehyde data

> str(Formaldehyde)

’data.frame’: 6 obs. of 2 variables:

$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9

$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

> summary(Formaldehyde)

carb optden

Min. :0.1000 Min. :0.0860

1st Qu.:0.3500 1st Qu.:0.3132

Median :0.5500 Median :0.4920

Mean :0.5167 Mean :0.4578

3rd Qu.:0.6750 3rd Qu.:0.6040

Max. :0.9000 Max. :0.7820

> Formaldehyde

carb optden

1 0.1 0.086

2 0.3 0.269

3 0.5 0.446

4 0.6 0.538

5 0.7 0.626

6 0.9 0.782

The InsectSprays data

> str(InsectSprays)

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 ..

> summary(InsectSprays)

count spray

Min. : 0.00 A:12

1st Qu.: 3.00 B:12

Median : 7.00 C:12

Mean : 9.50 D:12

3rd Qu.:14.25 E:12

Max. :26.00 F:12

3

> head(InsectSprays)

count spray

1 10 A

2 7 A

3 20 A

4 14 A

5 14 A

6 12 A

Copying, saving and restoring data objects

• Assigning a data object to a new name creates a copy.

• You can save a data object to a file, typically with the extension .rda or .Rdata, using
the save function.

• To restore the object you load the file.

> sprays <- InsectSprays

> save(sprays , file = "sprays.rda")

> rm(sprays)

> ls.str()

> load("sprays.rda")

> names(sprays)

[1] "count" "spray"

3 Accessing and modifying variables

Accessing and modifying variables

• The $ operator is used to access variables within a data frame.

> Formaldehyde$carb

[1] 0.1 0.3 0.5 0.6 0.7 0.9

• You can also use $ to assign to a variable name

> sprays$sqrtcount <- sqrt(sprays$count)

> names(sprays)

[1] "count" "spray" "sqrtcount"

• Assigning the special value NULL to the name of a variable removes it.

> sprays$sqrtcount <- NULL

> names(sprays)

[1] "count" "spray"

4

Using with and within

• In complex expressions it can become tedious to repeatedly type the name of the data
frame.

• The with function allows for direct access to variable names within an expression. It
provides “read-only” access.

> Formaldehyde$carb * Formaldehyde$optden

[1] 0.0086 0.0807 0.2230 0.3228 0.4382 0.7038

> with(Formaldehyde , carb * optden)

[1] 0.0086 0.0807 0.2230 0.3228 0.4382 0.7038

• The within function provides read-write access to a data frame. It does not change the
original frame; it returns a modified copy. To change the stored object you must assign
the result to the name.

> str(sprays <- within(sprays , sqrtcount <- sqrt(count)))

’data.frame’: 72 obs. of 3 variables:

$ count : num 10 7 20 14 14 12 10 23 17 20 ...

$ spray : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 ..

$ sqrtcount: num 3.16 2.65 4.47 3.74 3.74 ...

Data Organization

• Careful consideration of the data layout for experimental or observational data is repaid
in later ease of analysis. Sadly, the widespread use of spreadsheets does not encourage
such careful consideration.

• If you are organizing data in a table, use consistent data types within columns. Databases
require this; spreadsheets don’t.

• A common practice in some disciplines is to convert categorical data to 0/1 “indicator
variables” or to code the levels as numbers with a separate “data key”. This practice
is unnecessary and error-inducing in R. When you see categorical variables coded as
numeric variables, change them to factors or ordered factors.

• Spreadsheets also encourage the use of a “wide” data format, especially for longitudinal
data. Each row corresponds to an experimental unit and multiple observation occasions
are represented in different columns. The “long” format is preferred in R.

5

Converting numeric variables to factors

• The factor (ordered) function creates a factor (ordered factor) from a vector. Factor
labels can be specified in the optional labels argument.

• Suppose the spray variable in the InsectSprays data was stored as numeric values
1, 2, . . . , 6. We convert it back to a factor with factor.

> str(sprays <- within(InsectSprays , spray <- as.integer(spray)))

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: int 1 1 1 1 1 1 1 1 1 1 ...

> str(sprays <- within(sprays , spray <- factor(spray ,

+ labels = LETTERS [1:6])))

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 ..

4 Subsets of data frames

Subsets of data frames

• The subset function is used to extract a subset of the rows or of the columns or of both
from a data frame.

• The first argument is the name of the data frame. The second is an expression indicating
which rows are to be selected.

• This expression often uses logical operators such as ==, the equality comparison, or !=,
the inequality comparison, >=, meaning “greater than or equal to”, etc.

> str(sprayA <- subset(sprays , spray == "A"))

’data.frame’: 12 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 ..

• The optional argument select can be used to specify the variables to be included. There
is an example of its use in question 4 of the first set of exercises.

6

Subsets and factors

• The way that factors are defined, a subset of a factor retains the original set of levels.
Usually this is harmless but sometimes it can cause unexpected results.

• You can “drop unused levels” by applying factor to the factor. Many functions, such
as xtabs, which is used to create cross-tabulations, have optional arguments with names
like drop.unused.levels to automate this.

> xtabs(~spray , sprayA)

spray

A B C D E F

12 0 0 0 0 0

> xtabs(~spray , sprayA , drop = TRUE)

spray

A

12

Dropping unused levels in the spray factor and %in%

> str(sprayA <- within(sprayA , spray <- factor(spray)))

’data.frame’: 12 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...

> xtabs(~spray , sprayA)

spray

A

12

• Another useful comparison operator is %in% for selecting a subset of the values in a
variable.

> str(sprayDEF <- subset(sprays , spray %in% c("D", "E",

+ "F")))

’data.frame’: 36 obs. of 2 variables:

$ count: num 3 5 12 6 4 3 5 5 5 5 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 4 4 4 4 4 4 4 4 4 ..

7

“Long” and “wide” forms of data

• Spreadsheet users tend to store balanced data, such as InsectSprays, across many
columns. This is called the “wide” format. The unstack function converts a simple
“long” data set to wide; stack for the other way.

> str(unstack(InsectSprays))

’data.frame’: 12 obs. of 6 variables:

$ A: num 10 7 20 14 14 12 10 23 17 20 ...

$ B: num 11 17 21 11 16 14 17 17 19 21 ...

$ C: num 0 1 7 2 3 1 2 1 3 0 ...

$ D: num 3 5 12 6 4 3 5 5 5 5 ...

$ E: num 3 5 3 5 3 6 1 1 3 2 ...

$ F: num 11 9 15 22 15 16 13 10 26 26 ...

• The problem with the wide format is that it only works for balanced data. A designed
experiment may produce balanced data (although “Murphy’s Law” would indicate oth-
erwise) but observational data are rarely balanced.

• Stay with the long format (all the observations on all the units are in a single column)
when possible.

Using reshape

• The reshape function allows for more general translations of long to wide and vice-versa.
It is specifically intended for longitudinal data.

• There is also a package called "reshape" with even more general (but potentially con-
fusing) capabilities.

• Phil Spector’s book, Data Manipulation with R (Springer, 2008) covers this topic in more
detail.

Determining unique rows in a data frame

• One disadvantage of keeping data in the long format is redundancy and the possibility
of inconsistency.

• In the first set of exercises you are asked to create a data frame classroom from a csv file
available on the Internet. Each of the 1190 rows corresponds to a student in a classroom
in a school. There is one numeric “school level” covariate, housepov.

• To check if housepov is stored consistently we select the unique combinations of only
those two columns

> str(unique(subset(classroom , select = c(schoolid , housepov))))

’data.frame’: 107 obs. of 2 variables:

$ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 2 3 4 5 6 7..

$ housepov: num 0.082 0.082 0.086 0.365 0.511 0.044 0.148 0.085 0..

Because there are 107 unique combinations and 107 schools, housepov is consistent with
schoolid.

8

Summary

• Most common data organization is as a data.frame, which is a rectangular table. Columns
can be numeric, factors, ordered factors, dates, date/time values, etc.

• Data can be read from “flat files” either locally or over the web. Variables are accessed
or modified using the $ operator or functions with() and within().

• The str(), summary() and subset() functions are versatile and worth learning.

• For longitudinal and other data, prefer the “long” format to the “wide” format.

9

	Web site
	Data
	Variables
	Subsets

