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Nonlinear mixed models

Population pharmacokinetic data are often modeled using nonlinear
mixed-effects models (NLMMs).

These are nonlinear because pharmacokinetic parameters - rate
constants, clearance rates, etc. - occur nonlinearly in the model
function.

In statistical terms these are mixed-effects models because they
involve both fixed-effects parameters, applying to the entire
population or well-defined subsets of the population, and random
effects associated with particular experimental or observational units
under study.

Many algorithms for obtaining parameter estimates, usually
“something like” the maximum likelihood estimates (MLEs), for such
models have been proposed and implemented.

Comparing different algorithms is not easy. Even understanding the
definition of the model and the proposed algorithm is not easy.

Douglas Bates (R-Core) NLMM Sept 24, 2010 3 / 23



An example: Theophylline pharmacokinetics
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These are serum concentration profiles for 12 volunteers after
injestion of an oral dose of Theophylline, as described in Pinheiro and
Bates (2000).
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Modeling pharmacokinetic data with a nonlinear model

These are longitudinal repeated measures data.

For such data the time pattern of an individual’s response is
determined by pharmacokinetic parameters (e.g. rate constants) that
occur nonlinearly in the expression for the expected response.

The form of the nonlinear model is determined by the
pharmacokinetic theory, not derived from the data.

d · ke · ka · C
e−ke t − e−ka t

ka − ke

These pharmacokinetic parameters vary over the population. We wish
to characterize typical values in the population and the extent of the
variation.

Thus, we associate random effects with the parameters, ka , ke and C
in the nonlinear model.
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Statistical theory and applications - why we need both

For 30 years, I have had the pleasure of being part of the U. of
Wisconsin-Madison Statistics Dept. This year we celebrate the 50th
anniversary of the founding of our department by George Box (who
turned 90 earlier this year).
George’s approach, emphasizing both the theory and the applications
of statistics, has now become second-nature to me.
We are familiar with the dangers of practicing theory without
knowledge of applications. As George famously said, “All models are
wrong; some models are useful.” How can you expect to decide if a
model is useful unless you use it?
We should equally be wary of the application of statistical techniques
for which we know the “how” but not the “why”. Despite the
impression we sometimes give in courses, applied statistics is not just
a “black box” collection of formulas into which you pour your data,
hoping to get back a p-value that is less than 5%. (In the past many
people felt that“applied statistics is the use of SAS”but now we know
better.)
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The evolving role of approximation

When Don Watts and I wrote a book on nonlinear regression we
included a quote from Bertrand Russell, “Paradoxically, all exact
science is dominated by the idea of approximation”. In translating
statistical theory to applied techniques (computing algorithms) we
almost always use some approximations.

Sometimes the theory is deceptively simple (maximum likelihood
estimates are the values of the parameters that maximize the
likelihood, given the data) but the devil is in the details (so exactly
how do I maximize this likelihood?).

Decades of work by many talented people have provided us with a rich
assortment of computational approximations and other tricks to help
us get to the desired answer - or at least close to the desired answer.

It is important to realize that approximations, like all aspects of
computing, have a very short shelf life. Books on theory can be useful
for decades; books on computing may be outmoded in a few years.
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Failure to revisit assumptions leads to absurdities

Forty years ago, when I took an intro engineering stats class, we used
slide rules or pencil and paper for calculations. Our text took this into
account, providing short-cut computational formulas and “rules of
thumb” for the use of approximations, plus dozens of pages of tables
of probabilities and quantiles.
Today’s computing resources are unimaginably more sophisticated yet
the table of contents of most introductory text hasn’t changed.
The curriculum still includes using tables to evaluate probabilities,
calculating coefficient estimates of a simple linear regression by hand,
creating histograms (by hand, probably) to assess a density,
approximating a binomial by a Poisson or by a Gaussian for cases not
available in the tables, etc.
Then we make up PDF slides of this content and put the file on a
web site for the students to download and follow on their laptops
during the lecture. Apparently using the computer to evaluate the
probabilities or to fit a model would be cheating - you are supposed to
do this by hand.
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And what about nonlinear mixed-effects models?

Defining the statistical model is subtle and all methods proposed for
determining parameter estimates use approximations.

Often the many forms of approximations are presented as different
“types” of estimates from which one can pick and choose.

In 2007-2008 a consortium of pharma companies, the NLMEc,
discussed “next generation” simulation and estimation software for
population PK/PD modeling. They issued a set of user requirements
for such software including, in section 4.4 on estimation

The system will support but not be limited to the following
estimation methods: FO, FOI, FOCE, FOCEI, Laplacian,
Lindstrom and Bates, MCMC, MCPEM, SAEM, Gaussian
quadrature, and nonparametric methods.

Note the emphasis on estimation methods (i.e. algorithms). All of
these techniques are supposed to approximate the mle’s but that is
never mentioned.
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Linear and nonlinear mixed-effects models

Both linear and nonlinear mixed-effects models, are based on the
n-dimensional response random variable, Y , whose value, y , is
observed, and the q-dimensional, unobserved random effects variable,
B.

In the models we will consider B ∼ N (0,Σθ). The
variance-covariance matrix Σθ can be huge but it is completely
determined by a small number of variance-component parameters, θ.

The conditional distribution of the response, Y , is

(Y |B = b) ∼ N
(
µY|B, σ

2I n

)
The conditional mean, µY|B, depends on b and on the fixed-effects
parameters, β, through a linear predictor expression, Zb +Xβ.

For a linear mixed model (LMM), µY|B is exactly the linear predictor.
For an NLMM the linear predictor determines the parameter values in
the nonlinear model function which then determines the mean.
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Conditional mode and profiled Laplace approximation for
NLMMs

As previously stated, determining the conditional mode

ũθ,β = argmin
u

[∥∥y − µY|U
∥∥2 + ‖u‖2]

in an NLMM is a penalized nonlinear least squares (PNLS) problem.
It is a nonlinear optimization problem but a comparatively simple one.
The penalty term regularizes the optimization.
The Laplace approximation to the profiled deviance (profiled over σ2)
is, as before,

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
where Lθ is the sparse Cholesky factor evaluated at the conditional
mode.
The motivation for this approximation is that it replaces the
conditional distribution, (U |Y = y), for parameters β, θ and σ, by a
multivariate Gaussian approximation, evaluated at the mode.
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Laplace approximation and adaptive Gauss-Hermite
quadrature

The Laplace approximation

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
is a type of smoothing objective consisting of two terms:

n
[
1 + log

(
2πr2(θ,β)

n

)]
, which measures fidelity to the data, and

log(|Lθ|2), which measures the complexity of the model.

For models with a simple structure for the random effects (the
matrices Σθ and Λθ are block diagonal consisting of a large number of
small blocks) a further enhancement is to use adaptive Gauss-Hermite
quadrature, requiring values of the RSS at several points near ũθ,β
Note that the modifier adaptive, meaning evaluating at the
conditional mode, is important. Gauss-Hermite quadrature without
first determining the conditional mode is not a good idea.
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Consequences for comparisons of methods

We should distinguish between an algorithm, which is a sort of a
black box, and a criterion, such as maximizing the likelihood (or,
equivalently, minimizing the deviance.

The criterion is based on the statistical model and exists outside of
any particular implementation or computing hardware. It is part of
the theory, which has a long shelf life.

A particular approximation, algorithm and implementation has a short
shelf life.

I claim it does not make sense to regard the FO, FOI, . . . methods as
producing well-defined types of “estimates” in the same sense that
maximum likelihood estimates, or maximum a posteriori estimates are
defined.

If you use a criterion to define an estimation method then
implementations should be compared on the basis of that criterion,
not on something like mean squared error.

Douglas Bates (R-Core) NLMM Sept 24, 2010 13 / 23



Specifying the nonlinear model function

We must specify the nonlinear model function and the linear predictor
expression in the model formula for an NLMM. We do this with a
3-part formula expression.

At present nonlinear model function must return both the conditional
mean and the gradient expression (derivative of the conditional mean
with respect to the nonlinear model parameters). It is helpful to use
the deriv() function to symbolically differentiate the model function.

Some common models have been encapsulated as “self-starting”
nonlinear regression models. For example, the first-order
pharmacokinetic model used for the Theoph data is available as
SSfol. Run example(SSfol) to see what is meant.
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Specifying the mixed-effects formula

The mixed-effects formula for an nlmer model has a similar form to
that for lmer or glmer but with new constraints.

In an NLMM all of the fixed-effects parameters and all of the random
effects are with respect to the nonlinear model parameters, which are
lKe, lKa and lCl in this case.

For the purpose of specifying the model, these names are defined as
indicator variables.

In the lme4 package, the default fixed-effects expression is 0 + lKe +

lKa + lCl, indicating that the intercept term is suppressed and that
there is a single fixed effect for each nonlinear model parameter. In
lme4a this must be specified explicitly (although that may change).

Random effects must also be specified with respect to the nonlinear
model parameters. In the lme4a version terms look like (O +

lKe|Subject).
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Model building

Even more so that for GLMMs and NLMMs, it is important to start
with simple specification of the random effects. Expecting to estimate
many variance-covariance parameters for random effects filtered
through a nonlinear model function is unrealistic.

Use verbose=TRUE in all but the simplest cases.

In lme4a the verbose option shows two sets of iterations, one over θ
only and one over θ and β.

You can suppress the second optimization, which often does little to
lower the deviance, by setting nAGQ=0.

We will begin with independent scalar random effects for each
nonlinear model parameter.
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Initial fit

> Th.start <- c(lKe = -2.5, lKa = 0.5, lCl = -3)

> nm1 <- nlmer(conc ~ SSfol(Dose , Time ,lKe , lKa , lCl) ~

+ 0+lKe+lKa+lCl +(0+ lKe|Subject )+(0+ lKa|Subject)

+ +(0+ lCl|Subject), nAGQ=0, Theoph ,

+ start = Th.start , verbose=TRUE)

npt = 7 , n = 3

rhobeg = 0.2 , rhoend = 2e-07

0.020: 12: 369.069;0.330364 1.03590 0.628374

0.0020: 26: 355.652;0.0987868 1.12332 0.239366

0.00020: 52: 354.040; 0.00000 0.925125 0.236817

2.0e-05: 60: 354.040; 0.00000 0.926861 0.236828

2.0e-06: 68: 354.040;3.63175e-06 0.927020 0.236817

2.0e-07: 73: 354.040; 0.00000 0.927017 0.236816

At return

78: 354.04035: 4.74002e-09 0.927016 0.236816
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Results of initial fit

Nonlinear mixed model fit by maximum likelihood [’merMod’]

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ 0 + lKe + lKa + lCl + (0 + lKe | Subject) + (0 + lKa | Subject) + (0 + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

368.0404 388.2200 -177.0202 354.0404

Random effects:

Groups Name Variance Std.Dev.

Subject lKe 1.125e-17 3.354e-09

Subject lKa 4.303e-01 6.560e-01

Subject lCl 2.808e-02 1.676e-01

Residual 5.007e-01 7.076e-01

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.45467 0.01406 -174.53

lKa 0.46644 0.19459 2.40

lCl -3.22717 0.04968 -64.96
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Reducing the model

The variance of the random effect for lK3 is essentially zero. Eliminate it.

> nm2 <- nlmer(conc ~ SSfol(Dose , Time ,lKe , lKa , lCl) ~

+ 0+lKe+lKa+lCl +(0+ lKa|Subject)

+ +(0+ lCl|Subject), Theoph , nAGQ=0,

+ start = Th.start , verbose=TRUE)

npt = 5 , n = 2

rhobeg = 0.2 , rhoend = 2e-07

0.020: 9: 354.776; 1.00379 0.200012

0.0020: 14: 354.150;0.991448 0.248465

0.00020: 19: 354.119;0.992540 0.237716

2.0e-05: 43: 354.040;0.927023 0.236819

2.0e-06: 47: 354.040;0.927023 0.236819

2.0e-07: 50: 354.040;0.927016 0.236816

At return

55: 354.04035: 0.927016 0.236816

Douglas Bates (R-Core) NLMM Sept 24, 2010 19 / 23



Allowing within-subject correlation of random effects

Now allow for possible correlation of these random effects

> nm3 <- nlmer(conc ~ SSfol(Dose , Time ,lKe , lKa , lCl) ~

+ 0+lKe+lKa+lCl +(0+ lKa+lCl|Subject),

+ Theoph , start = Th.start , verbose=TRUE)

npt = 7 , n = 3

rhobeg = 0.2 , rhoend = 2e-07

0.020: 11: 354.779; 1.00390 0.00155136 0.200015

0.0020: 21: 354.154;0.990900 -0.00881029 0.228757

0.00020: 51: 354.044;0.940578 -0.00287833 0.237085

2.0e-05: 67: 354.040;0.926993 -0.00181432 0.236803

2.0e-06: 74: 354.040;0.926990 -0.00176709 0.236768

2.0e-07: 79: 354.040;0.926989 -0.00176645 0.236768

At return

85: 354.03976: 0.926989 -0.00176668 0.236769

npt = 12 , n = 6

rhobeg = 0.6454427 , rhoend = 6.454427e-07

0.065: 13: 366.775;0.926989 -0.00176668 0.645443 -2.45474 0.466472 -3.22721

0.0065: 29: 358.859;0.959051 -0.119105 0.314781 -2.41046 0.303550 -3.19987

0.00065: 71: 354.665; 1.10706 0.0111648 0.242826 -2.46804 0.401075 -3.23288

6.5e-05: 117: 353.972;0.941246 -4.31282e-05 0.237685 -2.46866 0.484151 -3.23066

6.5e-06: 133: 353.972;0.941267 0.000223736 0.237657 -2.46846 0.484378 -3.23035

6.5e-07: 145: 353.972;0.941270 0.000229860 0.237655 -2.46845 0.484366 -3.23035

At return

162: 353.97175: 0.941271 0.000229826 0.237656 -2.46845 0.484365 -3.23034
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Model nm3

Nonlinear mixed model fit by maximum likelihood [’merMod’]

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ 0 + lKe + lKa + lCl + (0 + lKa + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

367.9718 388.1514 -176.9859 353.9718

Random effects:

Groups Name Variance Std.Dev. Corr

Subject lKa 0.44258 0.6653

lCl 0.02821 0.1680 0.001

Residual 0.49953 0.7068

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.46845 0.01403 -175.94

lKa 0.48436 0.19730 2.45

lCl -3.23034 0.04979 -64.89
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Anova comparison

> anova(nm2 ,nm3)

Data: Theoph

Models:

nm2: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ 0 + lKe + lKa + lCl +

nm2: (0 + lKa | Subject) + (0 + lCl | Subject)

nm3: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ 0 + lKe + lKa + lCl +

nm3: (0 + lKa + lCl | Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

nm2 6 366.04 383.34 -177.02 354.04

nm3 7 367.97 388.15 -176.99 353.97 0.0686 1 0.7934

This comparison is not quite fair because nm2 was fit with nAGQ=0

and nm3 allowed both phases of the optimization.

But we already conclude that the more complex model nm3 is not a
significantly better fit.
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Summary

The theory of NLMMs follows fairly closely the theory of LMMs

Model specification is more complex because of an additional level of
parameters to specify.

The progress of the iterations should be carefully monitored. Often
variance component estimates that are very close to zero but not
exactly zero are provided.

There is a tendency to incorporate too much complexity in such
models. As Einstein said, “A scientific theory should be as simple as
possible, but no simpler.”

Douglas Bates (R-Core) NLMM Sept 24, 2010 23 / 23


	Nonlinear mixed models
	Statistical theory, applications and approximations
	Model definition
	Comparing estimation methods
	Fitting NLMMs in lme4 and lme4a

