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Describing the precision of parameters estimates

In many ways the purpose of statistical analysis can be considered as
quantifying the variability in data and determining how the variability
affects the inferences that we draw from it.

Good statistical practice suggests, therefore, that we not only provide
our “best guess”, the point estimate of a parameter, but also describe
its precision (e.g. interval estimation).

Some of the time (but not nearly as frequently as widely believed) we
also want to check whether a particular parameter value is consistent
with the data (i.e.. hypothesis tests and p-values).

In olden days it was necessary to do some rather coarse
approximations such as summarizing precision by the standard error of
the estimate or calculating a test statistic and comparing it to a
tabulated value to derive a 0/1 response of “significant (or not) at
the 5% level”.
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Modern practice

Our ability to do statistical computing has changed from the “olden
days”. Current hardware and software would have been unimaginable
when I began my career as a statistician. We can work with huge
data sets having complex structure and fit sophisticated models to
them quite easily.

Regrettably, we still frequently quote the results of this sophisticated
modeling as point estimates, standard errors and p-values.

Understandably, the client (and the referees reading the client’s
paper) would like to have simple, easily understood summaries so they
can assess the analysis at a glance. However, the desire for simple
summaries of complex analyses is not, by itself, enough to these
summaries meaningful.

We must not only provide sophisticated software for statisticians and
other researchers; we must also change their thinking about
summaries.
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Summaries of mixed-effects models
Commercial software for fitting mixed-effects models (SAS PROC
MIXED, SPSS, MLwin, HLM, Stata) provides estimates of
fixed-effects parameters, standard errors, degrees of freedom and
p-values. They also provide estimates of variance components and
standard errors of these estimates.
The mixed-effects packages for R that I have written (nlme with José
Pinheiro and lme4 with Martin Mächler) do not provide standard
errors of variance components. lme4 doesn’t even provide p-values for
the fixed effects.
This is a source of widespread anxiety. Many view it as an indication
of incompetence on the part of the developers (“Why can’t lmer
provide the p-values that I can easily get from SAS?”)
The 2007 book by West, Welch and Galecki shows how to use all of
these software packages to fit mixed-effects models on 5 different
examples. Every time they provide comparative tables they must add
a footnote that lme doesn’t provide standard errors of variance
components.
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What does a standard error tell us?

Typically we use a standard error of a parameter estimate to assess
precision (e.g. a 95% confidence interval on µ is roughly x̄± 2 s√

n
) or

to form a test statistic (e.g. a test of H0 : µ = 0 versus Ha : µ 6= 0
based on the statistic x̄

s/
√
n

).

Such intervals or test statistics are meaningful when the distribuion of
the estimator is more-or-less symmetric.

We would not, for example, quote a standard error of σ̂2 because we
know that the distribution of this estimator, even in the simplest case
(the mythical i.i.d. sample from a Gaussian distribution), is not at all
symmetric. We use quantiles of the χ2 distribution to create a
confidence interval.

Why, then, should we believe that when we create a much more
complex model the distribution of estimators of variance components
will magically become sufficiently symmetric for standard errors to be
meaningful?
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The Dyestuff data set
The Dyestuff, Penicillin and Pastes data sets all come from the
classic book Statistical Methods in Research and Production, edited
by O.L. Davies and first published in 1947.
The Dyestuff data are a balanced one-way classification of the
Yield of dyestuff from samples produced from six Batches of an
intermediate product. See ?Dyestuff.

> str(Dyestuff)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635
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Dyestuff data plot

Yield of dyestuff (grams of standard color)
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The line joins the mean yields of the six batches, which have been
reordered by increasing mean yield.

The vertical positions are jittered slightly to reduce overplotting. The
lowest yield for batch A was observed on two distinct preparations
from that batch.
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A mixed-effects model for the dyestuff yield
> fm1 <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff)
> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

325.7 329.9 -159.8 327.4 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1764.0 42.00

Residual 2451.3 49.51

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.81

Fitted model fm1 has one fixed-effect parameter, the mean yield, and
one random-effects term, generating a simple, scalar random effect
for each level of Batch.
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REML estimates versus ML estimates

The default parameter estimation criterion for linear mixed models is
restricted (or “residual”) maximum likelihood (REML).

Maximum likelihood (ML) estimates (sometimes called “full
maximum likelihood”) can be requested by specifying REML = FALSE
in the call to lmer.

Generally REML estimates of variance components are preferred. ML
estimates are known to be biased. Although REML estimates are not
guaranteed to be unbiased, they are usually less biased than ML
estimates.

Roughly, the difference between REML and ML estimates of variance
components is comparable to estimating σ2 in a fixed-effects
regression by SSR/(n− p) versus SSR/n, where SSR is the residual
sum of squares.

For a balanced, one-way classification like the Dyestuff data, the
REML and ML estimates of the fixed-effects are identical.
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Re-fitting the model for ML estimates

> (fm1M <- update(fm1, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

333.3 337.5 -163.7 327.3 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.4 37.261

Residual 2451.2 49.510

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

(The extra parentheses around the assignment cause the value to be
printed. Generally the results of assignments are not printed.)
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Evaluating the deviance function

The profiled deviance function for such a model can be expressed as a
function of 1 parameter only, the ratio of the random effects’
standard deviation to the residual standard deviation.

A very brief explanation is based on the n-dimensional response
random variation, Y , whose value, y, is observed, and the
q-dimensional, unobserved random effects variable, B, with
distributions

(Y |B = b) ∼ N
(
Zb+Xβ, σ2In

)
, B ∼ N (0,Σθ) ,

For our example, n = 30, q = 6, X is a 30× 1 matrix of 1s, Z is the
30× 6 matrix of indicators of the levels of Batch and Σ is σ2

bI6.

We never really form Σθ; we always work with the relative covariance
factor, Λθ, defined so that

Σθ = σ2ΛθΛ
ᵀ
θ .

In our example θ = σb
σ and Λθ = θI6.
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Orthogonal or “unit” random effects

We will define a q-dimensional “spherical” or “unit” random-effects
vector, U , such that

U ∼ N
(
0, σ2Iq

)
, B = Λθ U ⇒ Var(B) = σ2ΛθΛ

ᵀ
θ = Σθ.

The linear predictor expression becomes

Zb+Xβ = ZΛθ u+Xβ = Uθ u+Xβ

where Uθ = ZΛθ.

The key to evaluating the log-likelihood is the Cholesky factorization

LθL
ᵀ
θ = P

(
Uᵀ
θUθ + Iq

)
P ᵀ

(P is a fixed permutation that has practical importance but can be
ignored in theoretical derivations). The sparse, lower-triangular Lθ
can be evaluated and updated for new θ even when q is in the
millions and the model involves random effects for several factors.
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The profiled deviance

The Cholesky factor, Lθ, allows evaluation of the conditional mode
ũθ,β (also the conditional mean for linear mixed models) from(

Uᵀ
θUθ + Iq

)
ũθ,β = P ᵀLθL

ᵀ
θP ũθ,β = Uᵀ

θ (y −Xβ)

Let r2(θ,β) = ‖y −Xβ −Uθ ũθ,β‖2 + ‖ũθ,β‖2.

`(θ,β, σ|y) = logL(θ,β, σ|y) can be written

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)
σ2

+ log(|Lθ|2)

The conditional estimate of σ2 is

σ̂2(θ,β) =
r2(θ,β)

n

producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
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Profiling the deviance with respect to β

Because the deviance depends on β only through r2(θ,β) we can
obtain the conditional estimate, β̂θ, by extending the PLS problem to

r2(θ) = min
u,β

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
with the solution satisfying the equations[

Uᵀ
θUθ + Iq Uᵀ

θX
XᵀUθ XᵀX

] [
ũθ
β̂θ

]
=
[
Uᵀ
θ y

Xᵀy.

]
The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ)

n

)]
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Profiled deviance and its components
For this simple model we can evaluate and plot the deviance for a
range of θ values. We also plot its components, log(|Lθ|2) (ldL2)

and n
[
1 + log

(
2πr2(θ)

n

)]
(lprss).

lprss measures fidelity to the data. It is bounded above and below.
log(|Lθ|2) measures complexity of the model. It is bounded below but
not above.
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The MLE (or REML estimate) of σ2
b can be 0

For some model/data set combinations the estimate of σ2
b is zero.

This occurs when the decrease in lprss as θ ↑ is not sufficient to
counteract the increase in the complexity, log(|Lθ|2). The
Dyestuff2 data from Box and Tiao (1973) show this.
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Components of the profiled deviance for Dyestuff2
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For this data set the difference in the upper and lower bounds on
lprss is not sufficient to counteract the increase in complexity of the
model, as measured by log(|Lθ|2).
Software should gracefully handle cases of σ2

b = 0 or, more generally,
Λθ being singular. This is not done well in the commercial software.
One of the big differences between inferences for σ2

b and those for σ2

is the need to accomodate to do about values of σ2
b that are zero or

near zero.
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Profiled deviance and REML criterion for σb and σ
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The contours correspond to 2-dimensional marginal confidence
regions derived from a likelihood-ratio test.
The dotted and dashed lines are the profile traces.
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Profiling with respect to each parameter separately
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These curves show the minimal deviance achieveable for a value of
one of the parameters, optimizing over all the other parameters.
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Profiled deviance of the variance components

Recall that we have been working on the scale of the standard
deviations, σb and σ. On the scale of the variance, things look worse.
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Square root of change in the profiled deviance

The difference of the profiled deviance at the optimum and at a
particular value of σ or σb is the likelihood ratio test statistic for that
parameter value.

If the use of a standard error, and the implied symmetric intervals, is
appropriate then this function should be quadratic in the parameter
and its square root should be like an absolute value function.

The assumption that the change in the deviance has a χ2
1 distribution

is equivalent to saying that
√

LRT is the absolute value of a standard
normal.

If we use the signed square root transformation, assigning −
√

LRT to
parameters to the left of the estimate and

√
LRT to parameter values

to the right, we should get a straight line on a standard normal scale.
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Plot of square root of LRT statistic
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Signed square root plot of LRT statistic
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Summary

Summaries based on parameter estimates and standard errors are
appropriate when the distribution of the estimator can be assumed to
be reasonably symmetric.

Estimators of variances do not tend to have a symmetric distribution.
If anything the scale of the log-variance (which is a multiple of the
log-standard deviation) would be the more appropriate scale on which
to assume symmetry.

Estimators of variance components are more problematic because
they can take on the value of zero.

Profiling the deviance and plotting the result can help to visualize the
precision of the estimates.
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