
Chapter 1

A Simple, Linear, Mixed-effects Model

In this book we describe the theory behind a type of statistical model called
mixed-effects models and the practice of fitting and analyzing such models
using the lme4 package for R. These models are used in many different dis-
ciplines. Because the descriptions of the models can vary markedly between
disciplines, we begin by describing what mixed-effects models are and by ex-
ploring a very simple example of one type of mixed model, the linear mixed
model.

This simple example allows us to illustrate the use of the lmer function in
the lme4 package for fitting such models and for analyzing the fitted model.
We describe methods of assessing the precision of the parameter estimates
and of visualizing the conditional distribution of the random effects, given
the observed data.

1.1 Mixed-effects Models

Mixed-effects models, like many other types of statistical models, describe
a relationship between a response variable and some of the covariates that
have been measured or observed along with the response. In mixed-effects
models at least one of the covariates is a categorical covariate representing
experimental or observational “units” in the data set. In the example from
the chemical industry that is given in this chapter, the observational unit is
the batch of an intermediate product used in production of a dye. In medical
and social sciences the observational units are often the human or animal
subjects in the study. In agriculture the experimental units may be the plots
of land or the specific plants being studied.

In all of these cases the categorical covariate or covariates are observed at
a set of discrete levels. We may use numbers, such as subject identifiers, to
designate the particular levels that we observed but these numbers are simply
labels. The important characteristic of a categorical covariate is that, at each
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2 1 A Simple, Linear, Mixed-effects Model

observed value of the response, the covariate takes on the value of one of a
set of distinct levels.

Parameters associated with the particular levels of a covariate are some-
times called the “effects” of the levels. If the set of possible levels of the
covariate is fixed and reproducible we model the covariate using fixed-effects
parameters. If the levels that we observed represent a random sample from
the set of all possible levels we incorporate random effects in the model.

There are two things to notice about this distinction between fixed-effects
parameters and random effects. First, the names are misleading because the
distinction between fixed and random is more a property of the levels of the
categorical covariate than a property of the effects associated with them. Sec-
ondly, we distinguish between“fixed-effects parameters”, which are indeed pa-
rameters in the statistical model, and “random effects”, which, strictly speak-
ing, are not parameters. As we will see shortly, random effects are unobserved
random variables.

To make the distinction more concrete, suppose that we wish to model the
annual reading test scores for students in a school district and that the co-
variates recorded with the score include a student identifier and the student’s
gender. Both of these are categorical covariates. The levels of the gender co-
variate, male and female, are fixed. If we consider data from another school
district or we incorporate scores from earlier tests, we will not change those
levels. On the other hand, the students whose scores we observed would gen-
erally be regarded as a sample from the set of all possible students whom
we could have observed. Adding more data, either from more school districts
or from results on previous or subsequent tests, will increase the number of
distinct levels of the student identifier.

Mixed-effects models or, more simply, mixed models are statistical models
that incorporate both fixed-effects parameters and random effects. Because
of the way that we will define random effects, a model with random effects
always includes at least one fixed-effects parameter. Thus, any model with
random effects is a mixed model.

We characterize the statistical model in terms of two random variables: a
q-dimensional vector of random effects represented by the random variable
B and an n-dimensional response vector represented by the random variable
Y . (We use upper-case “script” characters to denote random variables. The
corresponding lower-case upright letter denotes a particular value of the ran-
dom variable.) We observe the value, y, of Y . We do not observe the value
of B.

When formulating the model we describe the unconditional distribution
of B and the conditional distribution, (Y |B = b). The descriptions of the
distributions involve the form of the distribution and the values of certain
parameters. We use the observed values of the response and the covariates to
estimate these parameters and to make inferences about them.

That’s the big picture. Now let’s make this more concrete by describing a
particular, versatile class of mixed models called linear mixed models and by
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1.2 The Dyestuff and Dyestuff2 Data 3

studying a simple example of such a model. First we will describe the data
in the example.

1.2 The Dyestuff and Dyestuff2 Data

Models with random effects have been in use for a long time. The first edition
of the classic book, Statistical Methods in Research and Production, edited by
O.L. Davies, was published in 1947 and contained examples of the use of ran-
dom effects to characterize batch-to-batch variability in chemical processes.
The data from one of these examples are available as the Dyestuff data in the
lme4 package. In this section we describe and plot these data and introduce
a second example, the Dyestuff2 data, described in Box and Tiao [1973].

1.2.1 The Dyestuff Data

The Dyestuff data are described in Davies and Goldsmith [1972, Table 6.3,
p. 131], the fourth edition of the book mentioned above, as coming from

an investigation to find out how much the variation from batch to batch in the
quality of an intermediate product (H-acid) contributes to the variation in the
yield of the dyestuff (Naphthalene Black 12B) made from it. In the experiment
six samples of the intermediate, representing different batches of works manu-
facture, were obtained, and five preparations of the dyestuff were made in the
laboratory from each sample. The equivalent yield of each preparation as grams
of standard colour was determined by dye-trial.

To access these data within R we must first attach the lme4 package to our
session using
> library(lme4)

Note that the ">" symbol in the line shown is the prompt in R and not part
of what the user types. The lme4 package must be attached before any of the
data sets or functions in the package can be used. If typing this line results in
an error report stating that there is no package by this name then you must
first install the package.

In what follows, we will assume that the lme4 package has been installed
and that it has been attached to the R session before any of the code shown
has been run.

The str function in R provides a concise description of the structure of the
data
> str(Dyestuff)

'data.frame': 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...
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4 1 A Simple, Linear, Mixed-effects Model

from which we see that it consists of 30 observations of the Yield, the response
variable, and of the covariate, Batch, which is a categorical variable stored as
a factor object. If the labels for the factor levels are arbitrary, as they are
here, we will use letters instead of numbers for the labels. That is, we label
the batches as "A" through "F" rather than "1" through "6". When the labels
are letters it is clear that the variable is categorical. When the labels are
numbers a categorical covariate can be mistaken for a numeric covariate,
with unintended consequences.

It is a good practice to apply str to any data frame the first time you
work with it and to check carefully that any categorical variables are indeed
represented as factors.

The data in a data frame are viewed as a table with columns corresponding
to variables and rows to observations. The functions head and tail print the
first or last few rows (the default value of “few” happens to be 6 but we can
specify another value if we so choose)

> head(Dyestuff)

Batch Yield

1 A 1545

2 A 1440

3 A 1440

4 A 1520

5 A 1580

6 B 1540

or we could ask for a summary of the data

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635

Although the summary does show us an important property of the data,
namely that there are exactly 5 observations on each batch — a property
that we will describe by saying that the data are balanced with respect to
Batch — we usually learn much more about the structure of such data from
plots like Fig. 1.1 than we can from numerical summaries.

In Fig. 1.1 we can see that there is considerable variability in yield, even for
preparations from the same batch, but there is also noticeable batch-to-batch
variability. For example, four of the five preparations from batch F provided
lower yields than did any of the preparations from batches C and E.

This plot, and essentially all the other plots in this book, were created
using Deepayan Sarkar’s lattice package for R. In Sarkar [2008] he describes
how one would create such a plot. Because this book was created using Sweave
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Fig. 1.1 Yield of dyestuff (Napthalene Black 12B) for 5 preparations from each of 6
batches of an intermediate product (H-acid). The line joins the mean yields from the
batches, which have been ordered by increasing mean yield. The vertical positions
are “jittered” slightly to avoid over-plotting. Notice that the lowest yield for batch A
was observed for two distinct preparations from that batch.

[Leisch, 2002], the exact code used to create the plot, as well as the code for
all the other figures and calculations in the book, is available on the web site
for the book. In Sect. ?? we review some of the principles of lattice graphics,
such as reordering the levels of the Batch factor by increasing mean response,
that enhance the informativeness of the plot. At this point we will concentrate
on the information conveyed by the plot and not on how the plot is created.

In Sect. 1.3.1 we will use mixed models to quantify the variability in yield
between batches. For the time being let us just note that the particular
batches used in this experiment are a selection or sample from the set of
all batches that we wish to consider. Furthermore, the extent to which one
particular batch tends to increase or decrease the mean yield of the process
— in other words, the “effect” of that particular batch on the yield — is not
as interesting to us as is the extent of the variability between batches. For
the purposes of designing, monitoring and controlling a process we want to
predict the yield from future batches, taking into account the batch-to-batch
variability and the within-batch variability. Being able to estimate the extent
to which a particular batch in the past increased or decreased the yield is not
usually an important goal for us. We will model the effects of the batches as
random effects rather than as fixed-effects parameters.

1.2.2 The Dyestuff2 Data

The Dyestuff2 data are simulated data presented in Box and Tiao [1973,
Table 5.1.4, p. 247] where the authors state
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Fig. 1.2 Simulated data presented in Box and Tiao [1973] with a structure similar
to that of the Dyestuff data. These data represent a case where the batch-to-batch
variability is small relative to the within-batch variability.

These data had to be constructed for although examples of this sort undoubt-
edly occur in practice they seem to be rarely published.

The structure and summary

> str(Dyestuff2)

'data.frame': 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 7.3 3.85 2.43 9.57 7.99 ...

> summary(Dyestuff2)

Batch Yield

A:5 Min. :-0.892

B:5 1st Qu.: 2.765

C:5 Median : 5.365

D:5 Mean : 5.666

E:5 3rd Qu.: 8.151

F:5 Max. :13.434

are intentionally similar to those of the Dyestuff data. As can be seen in
Fig. 1.2 the batch-to-batch variability in these data is small compared to the
within-batch variability. In some approaches to mixed models it can be dif-
ficult to fit models to such data. Paradoxically, small “variance components”
can be more difficult to estimate than large variance components.

The methods we will present are not compromised when estimating small
variance components.
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1.3 Fitting Linear Mixed Models

Before we formally define a linear mixed model, let’s go ahead and fit models
to these data sets using lmer. Like most model-fitting functions in R, lmer

takes, as its first two arguments, a formula specifying the model and the data
with which to evaluate the formula. This second argument, data, is optional
but recommended. It is usually the name of a data frame, such as those we
examined in the last section. Throughout this book all model specifications
will be given in this formula/data format.

We will explain the structure of the formula after we have considered an
example.

1.3.1 A Model For the Dyestuff Data

We fit a model to the Dyestuff data allowing for an overall level of the Yield

and for an additive random effect for each level of Batch

> fm1 <- lmer(Yield ~ 1 + (1|Batch), Dyestuff)

> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

REML

319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1764.0 42.001

Residual 2451.3 49.510

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.8

In the first line we call the lmer function to fit a model with formula
Yield ~ 1 + (1 | Batch)

applied to the Dyestuff data and assign the result to the name fm1. (The
name is arbitrary. I happen to use names that start with fm, indicating “fitted
model”.)

As is customary in R, there is no output shown after this assignment. We
have simply saved the fitted model as an object named fm1. In the second
line we display some information about the fitted model by applying print

to fm1. In later examples we will condense these two steps into one but here
it helps to emphasize that we save the result of fitting a model then apply
various extractor functions to the fitted model to get a brief summary of the
model fit or to obtain the values of some of the estimated quantities.
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8 1 A Simple, Linear, Mixed-effects Model

1.3.1.1 Details of the Printed Display

The printed display of a model fit with lmer has four major sections: a de-
scription of the model that was fit, some statistics characterizing the model
fit, a summary of properties of the random effects and a summary of the
fixed-effects parameter estimates. We consider each of these sections in turn.

The description section states that this is a linear mixed model in which the
parameters have been estimated as those that minimize the REML criterion
(explained in Sect. 5.5). The formula and data arguments are displayed for
later reference. If other, optional arguments affecting the fit, such as a subset

specification, were used, they too will be displayed here.
For models fit by the REML criterion the only statistic describing the

model fit is the value of the REML criterion itself. An alternative set of pa-
rameter estimates, the maximum likelihood estimates, are obtained by spec-
ifying the optional argument REML = FALSE.

> (fm1ML <- lmer(Yield ~ 1 + (1|Batch), Dyestuff, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance

333.3 337.5 -163.7 327.3

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.3 37.26

Residual 2451.3 49.51

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

(Notice that this code fragment also illustrates a way to condense the assign-
ment and the display of the fitted model into a single step. The redundant set
of parentheses surrounding the assignment causes the result of the assignment
to be displayed. We will use this device often in what follows.)

The display of a model fit by maximum likelihood provides several other
model-fit statistics such as Akaike’s Information Criterion (AIC) [Sakamoto
et al., 1986], Schwarz’s Bayesian Information Criterion (BIC) [Schwarz, 1978],
the log-likelihood (logLik) at the parameter estimates, and the deviance (neg-
ative twice the log-likelihood) at the parameter estimates. These are all statis-
tics related to the model fit and are used to compare different models fit to
the same data.

At this point the important thing to note is that the default estimation
criterion is the REML criterion. Generally the REML estimates of variance
components are preferred to the ML estimates. However, when comparing
models it is safest to refit all the models using the maximum likelihood cri-
terion. We will discuss comparisons of model fits in Sect. 2.2.4.
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The third section is the table of estimates of parameters associated with
the random effects. There are two sources of variability in the model we have
fit, a batch-to-batch variability in the level of the response and the residual
or per-observation variability — also called the within-batch variability. The
name “residual” is used in statistical modeling to denote the part of the
variability that cannot be explained or modeled with the other terms. It is
the variation in the observed data that is “left over” after we have determined
the estimates of the parameters in the other parts of the model.

Some of the variability in the response is associated with the fixed-effects
terms. In this model there is only one such term, labeled as the (Intercept).
The name “intercept”, which is better suited to models based on straight
lines written in a slope/intercept form, should be understood to represent
an overall “typical” or mean level of the response in this case. (In case you
are wondering about the parentheses around the name, they are included so
that you can’t accidentally create a variable with a name that conflicts with
this name.) The line labeled Batch in the random effects table shows that
the random effects added to the (Intercept) term, one for each level of the
Batch factor, are modeled as random variables whose unconditional variance
is estimated as 1764.05 g2 in the REML fit and as 1388.33 g2 in the ML
fit. The corresponding standard deviations are 42.00 g for the REML fit and
37.26 g for the ML fit.

Note that the last column in the random effects summary table is the
estimate of the variability expressed as a standard deviation rather than as a
variance. These are provided because it is usually easier to visualize standard
deviations, which are on the scale of the response, than it is to visualize
the magnitude of a variance. The values in this column are a simple re-
expression (the square root) of the estimated variances. Do not confuse them
with the standard errors of the variance estimators, which are not given here.
In Sect. 1.5 we explain why we do not provide standard errors of variance
estimates.

The line labeled Residual in this table gives the estimate of the variance of
the residuals (also in g2) and its corresponding standard deviation. For the
REML fit the estimated standard deviation of the residuals is 49.51 g and
for the ML fit it is also 49.51 g (Generally these estimates do not need to
be equal. They happen to be equal in this case because of the simple model
form and the balanced data set.)

The last line in the random effects table states the number of observations
to which the model was fit and the number of levels of any “grouping factors”
for the random effects. In this case we have a single random effects term,
(1|Batch), in the model formula and the grouping factor for that term is
Batch. There will be a total of six random effects, one for each level of Batch.

The final part of the printed display gives the estimates and standard errors
of any fixed-effects parameters in the model. The only fixed-effects term in
the model formula is the 1, denoting a constant which, as explained above, is
labeled as (Intercept). For both the REML and the ML estimation criterion
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the estimate of this parameter is 1527.5 g (equality is again a consequence of
the simple model and balanced data set). The standard error of the intercept
estimate is 19.38 g for the REML fit and 17.69 g for the ML fit.

1.3.2 A Model For the Dyestuff2 Data

Fitting a similar model to the Dyestuff2 data produces an estimate σ̂1 = 0 in
both the REML

> (fm2 <- lmer(Yield ~ 1 + (1|Batch), Dyestuff2))

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff2

REML

161.8

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 0.000 0.0000

Residual 13.806 3.7157

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.6656 0.6784 8.352

and the ML fits.

> (fm2ML <- update(fm2, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff2

AIC BIC logLik deviance

168.9 173.1 -81.44 162.9

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 0.000 0.0000

Residual 13.346 3.6532

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.666 0.667 8.494

(Note the use of the update function to re-fit a model changing some of the
arguments. In a case like this, where the call to fit the original model is not
very complicated, the use of update is not that much simpler than repeating
the original call to lmer with extra arguments. For complicated model fits it
can be.)
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An estimate of 0 for σ1 does not mean that there is no variation between the
groups. Indeed Fig. 1.2 shows that there is some small amount of variability
between the groups. The estimate, σ̂1 = 0, simply indicates that the level of
“between-group” variability is not sufficient to warrant incorporating random
effects in the model.

The important point to take away from this example is that we must
allow for the estimates of variance components to be zero. We describe such
a model as being degenerate, in the sense that it corresponds to a linear
model in which we have removed the random effects associated with Batch.
Degenerate models can and do occur in practice. Even when the final fitted
model is not degenerate, we must allow for such models when determining
the parameter estimates through numerical optimization.

To reiterate, the model fm2 corresponds to the linear model

> summary(fm2a <- lm(Yield ~ 1, Dyestuff2))

Call:

lm(formula = Yield ~ 1, data = Dyestuff2)

Residuals:

Min 1Q Median 3Q Max

-6.5576 -2.9006 -0.3006 2.4854 7.7684

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6656 0.6784 8.352 3.32e-09

Residual standard error: 3.716 on 29 degrees of freedom

because the random effects are inert, in the sense that they have a variance
of zero, and can be removed.

Notice that the estimate of σ from the linear model (called the Residual

standard error in the output corresponds to the estimate in the REML fit
(fm2) but not that from the ML fit (fm2ML). The fact that the REML esti-
mates of variance components in mixed models generalize the estimate of
the variance used in linear models, in the sense that these estimates coincide
in the degenerate case, is part of the motivation for the use of the REML
criterion for fitting mixed-effects models.

1.3.3 Further Assessment of the Fitted Models

The parameter estimates in a statistical model represent our “best guess” at
the unknown values of the model parameters and, as such, are important
results in statistical modeling. However, they are not the whole story. Statis-
tical models characterize the variability in the data and we must assess the
effect of this variability on the parameter estimates and on the precision of
predictions made from the model.
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12 1 A Simple, Linear, Mixed-effects Model

In Sect. 1.5 we introduce a method of assessing variability in parameter
estimates using the “profiled deviance” and in Sect. 1.6 we show methods of
characterizing the conditional distribution of the random effects given the
data. Before we get to these sections, however, we should state in some detail
the probability model for linear mixed-effects and establish some definitions
and notation. In particular, before we can discuss profiling the deviance, we
should define the deviance. We do that in the next section.

1.4 The Linear Mixed-effects Probability Model

In explaining some of parameter estimates related to the random effects we
have used terms such as “unconditional distribution” from the theory of prob-
ability. Before proceeding further we should clarify the linear mixed-effects
probability model and define several terms and concepts that will be used
throughout the book.

1.4.1 Definitions and Results

In this section we provide some definitions and formulas without derivation
and with minimal explanation, so that we can use these terms in what fol-
lows. In Chapter 5 we revisit these definitions providing derivations and more
explanation.

As mentioned in Sect. 1.1, a mixed model incorporates two random
variables: B, the q-dimensional vector of random effects, and Y , the n-
dimensional response vector. In a linear mixed model the unconditional dis-
tribution of B and the conditional distribution, (Y |B = b), are both multi-
variate Gaussian (or “normal”) distributions,

(Y |B = b)∼N (Xβ + Zb,σ2I)
B ∼N (0,Σθ ).

(1.1)

The conditional mean of Y , given B = b, is the linear predictor, Xβ + Zb,
which depends on the p-dimensional fixed-effects parameter, β , and on b.
The model matrices, X and Z, of dimension n× p and n× q, respectively,
are determined from the formula for the model and the values of covariates.
Although the matrix Z can be large (i.e. both n and q can be large), it is
sparse (i.e. most of the elements in the matrix are zero).

The relative covariance factor, Λθ is a q× q matrix, depending on the
variance-component parameter, θ , and generating the symmetric q×q variance-
covariance matrix, Σθ , according to
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1.4 The Linear Mixed-effects Probability Model 13

Σθ = σ2Λθ ΛT
θ . (1.2)

The spherical random effects, U ∼N (0,σ2Iq), determine B according to

B = Λθ U .

The penalized residual sum of squares (PRSS),

r2(θ ,β ,u) =
{‖y−Xβ −ZΛθ u‖2 +‖u‖2} , (1.3)

is the sum of the residual sum of squares, measuring fidelity of the model to
the data, and a penalty on the size of u, measuring the complexity of the
model. Minimizing r2 with respect to u,

r2
β ,θ = min

u

{‖y−Xβ −ZΛθ u‖2 +‖u‖2} (1.4)

is a direct (i.e. non-iterative) computation for which we calculate the sparse
Cholesky factor, Lθ , which is a lower triangular q×q matrix satisfying

Lθ LT
θ = ΛT

θ ZTZΛθ + Iq. (1.5)

where Iq is the q×q identity matrix.
The deviance (negative twice the log-likelihood) of the parameters, given

the data, y, is

d(θ ,β ,σ |y) = n log(2πσ2)+ log(|Lθ |2)+
r2

β ,θ

σ2 . (1.6)

where |Lθ | denotes the determinant of Lθ . Because Lθ is triangular, its de-
terminant is the product of its diagonal elements.

Because the conditional mean, µ, is a linear function of β and u, mini-
mization of the PRSS with respect to both β and u to produce

r2
θ = min

β ,u

{‖y−Xβ −ZΛθ u‖2 +‖u‖2} (1.7)

is also a direct calculation. The values of u and β that provide this minimum
are called, respectively, the conditional mode, ũθ , of the spherical random
effects and the conditional estimate, β̂θ , of the fixed effects. At the conditional
estimate of the fixed effects the deviance is

d(θ , β̂θ ,σ |y) = n log(2πσ2)+ log(|Lθ |2)+
r2

θ
σ2 . (1.8)

Minimizing this expression with respect to σ2 produces the conditional esti-
mate

σ̂2θ =
r2

θ
n

(1.9)
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which provides the profiled deviance,

d̃(θ |y) = d(θ , β̂θ , σ̂θ |y) = log(|Lθ |2)+ n
[

1 + log
(

2πr2
θ

n

)]
, (1.10)

a function of θ alone.
The maximum likelihood estimate (MLE) of θ , written θ̂ , is the value that

minimizes the profiled deviance (1.10). We determine this value by numerical
optimization. In the process of evaluating d̃(θ̂ |y) we determine β̂ , ũθ̂ and r2

θ̂
,

from which we can evaluate σ̂ =
√

r2
θ̂
/n.

The elements of the conditional mode of B, evaluated at the parameter
estimates,

b̃θ̂ = Λθ̂ ũθ̂ (1.11)

are sometimes called the best linear unbiased predictors or BLUPs of the
random effects. Although it has an appealing acronym, I don’t find the term
particularly instructive (what is a “linear unbiased predictor” and in what
sense are these the “best”?) and prefer the term “conditional mode”, which is
explained in Sect. 1.6.

1.4.2 Matrices and Vectors in the Fitted Model Object

The optional argument, verbose = TRUE, in a call to lmer produces output
showing the progress of the iterative optimization of d̃(θ |y).

> fm1ML <- lmer(Yield ~ 1|Batch, Dyestuff, REML = FALSE, verbose = TRUE)

0: 327.76702: 1.00000

1: 327.35312: 0.807151

2: 327.33414: 0.725317

3: 327.32711: 0.754925

4: 327.32706: 0.752678

5: 327.32706: 0.752578

6: 327.32706: 0.752581

The algorithm converges in 6 iterations to a profiled deviance of 327.32706
at θ =0.752581.

The actual values of many of the matrices and vectors defined above are
available in the environment of the fitted model object, accessed with the env

function. For example, Λθ̂ is

> env(fm1ML)$Lambda

6 x 6 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.7525806 . . . . .

[2,] . 0.7525806 . . . .

[3,] . . 0.7525806 . . .
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1.5 Assessing the Variability of the Parameter Estimates 15

Fig. 1.3 Image of the rel-
ative covariance factor, Λθ̂
for model fm1ML. The non-
zero elements are shown
as darkened squares. The
zero elements are blank.
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Fig. 1.4 Image of the transpose of the random-effects model matrix, Z, for model
fm1. The non-zero elements, which are all unity, are shown as darkened squares. The
zero elements are blank.

[4,] . . . 0.7525806 . .

[5,] . . . . 0.7525806 .

[6,] . . . . . 0.7525806

Often we will show the structure of sparse matrices as an image (Fig. 1.3).
Especially for large sparse matrices, the image conveys the structure more
compactly than does the printed representation.

In this simple model Λ = θI6 is a multiple of the identity matrix and the
30×6 model matrix Z, whose transpose is shown in Fig. 1.4, consists of the
indicator columns for Batch. Because the data are balanced with respect to
Batch, the Cholesky factor, L is also a multiple of the identity (you can check
this with image(env(fm1ML)$L). The vectors u and b and the matrix X have
the same names in env(fm1ML). The vector β is called fixef.

1.5 Assessing the Variability of the Parameter Estimates

In this section we show how to create a profile deviance object from a fitted
linear mixed model and how to use this object to evaluate confidence intervals
on the parameters. We also discuss the construction and interpretation of
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16 1 A Simple, Linear, Mixed-effects Model

profile zeta plots for the parameters and profile pairs plots for parameter
pairs.

1.5.1 Confidence Intervals on the Parameters

The mixed-effects model fit as fm1 or fm1ML has three parameters for which we
obtained estimates. These parameters are σ1, the standard deviation of the
random effects, σ , the standard deviation of the residual or “per-observation”
noise term and β0, the fixed-effects parameter that is labeled as (Intercept).

The profile function systematically varies the parameters in a model, as-
sessing the best possible fit that can be obtained with one parameter fixed
at a specific value and comparing this fit to the globally optimal fit, which is
the original model fit that allowed all the parameters to vary. The models are
compared according to the change in the deviance, which is the likelihood ra-
tio test (LRT) statistic. We apply a signed square root transformation to this
statistic and plot the resulting function, called ζ , versus the parameter value.
A ζ value can be compared to the quantiles of the standard normal distribu-
tion, Z ∼N (0,1). For example, a 95% profile deviance confidence interval
on the parameter consists of the values for which −1.960 < ζ < 1.960.

Because the process of profiling a fitted model, which involves re-fitting
the model many times, can be computationally intensive, one should exercise
caution with complex models fit to very large data sets. Because the statistic
of interest is a likelihood ratio, the model is re-fit according to the maximum
likelihood criterion, even if the original fit is a REML fit. Thus, there is a
slight advantage in starting with an ML fit.

> pr1 <- profile(fm1ML)

Plots of ζ versus the parameter being profiled (Fig. 1.5) are obtained with

> xyplot(pr1, aspect = 1.3)

We will refer to such plots as profile zeta plots. I usually adjust the aspect
ratio of the panels in profile zeta plots to, say, aspect = 1.3 and frequently
set the layout so the panels form a single row (layout = c(3,1), in this case).

The vertical lines in the panels delimit the 50%, 80%, 90%, 95% and 99%
confidence intervals, when these intervals can be calculated. Numerical values
of the endpoints are returned by the confint extractor.

> confint(pr1)

2.5 % 97.5 %

.sig01 12.197461 84.063361

.lsig 3.643624 4.214461

(Intercept) 1486.451506 1568.548494

By default the 95% confidence interval is returned. The optional argument,
level, is used to obtain other confidence levels.
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Fig. 1.5 Signed square root, ζ , of the likelihood ratio test statistic for each of the
parameters in model fm1ML. The vertical lines are the endpoints of 50%, 80%, 90%,
95% and 99% confidence intervals derived from this test statistic.
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Fig. 1.6 Profiled deviance, on the scale |ζ |, the square root of the change in the
deviance, for each of the parameters in model fm1ML. The intervals shown are 50%,
80%, 90%, 95% and 99% confidence intervals based on the profile likelihood.

> confint(pr1, level = 0.99)

0.5 % 99.5 %

.sig01 NA 113.690280

.lsig 3.571290 4.326337

(Intercept) 1465.872875 1589.127125

Notice that the lower bound on the 99% confidence interval for σ1 is not
defined. Also notice that we profile log(σ) instead of σ , the residual standard
deviation.

A plot of |ζ |, the absolute value of ζ , versus the parameter (Fig. 1.6),
obtained by adding the optional argument absVal = TRUE to the call to xyplot,
can be more effective for visualizing the confidence intervals.
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Fig. 1.7 Signed square root, ζ , of the likelihood ratio test statistic as a function of
log(σ), of σ and of σ2. The vertical lines are the endpoints of 50%, 80%, 90%, 95%
and 99% confidence intervals.

1.5.2 Interpreting the Profile Zeta Plot

A profile zeta plot, such as Fig. 1.5, shows us the sensitivity of the model fit
to changes in the value of particular parameters. Although this is not quite
the same as describing the distribution of an estimator, it is a similar idea
and we will use some of the terminology from distributions when describing
these plots. Essentially we view the patterns in the plots as we would those
in a normal probability plot of data values or residuals from a model.

Ideally the profile zeta plot will be close to a straight line over the region
of interest, in which case we can perform reliable statistical inference based
on the parameter’s estimate, its standard error and quantiles of the stan-
dard normal distribution. We will describe such as situation as providing a
good normal approximation for inference. The common practice of quoting
a parameter estimate and its standard error assumes that this is always the
case.

In Fig. 1.5 the profile zeta plot for log(σ) is reasonably straight so log(σ)
has a good normal approximation. But this does not mean that there is a
good normal approximation for σ2 or even for σ . As shown in Fig. 1.7 the
profile zeta plot for log(σ) is slightly skewed, that for σ is moderately skewed
and the profile zeta plot for σ2 is highly skewed. Deviance-based confidence
intervals on σ2 are quite asymmetric, of the form “estimate minus a little,
plus a lot”.

This should not come as a surprise to anyone who learned in an intro-
ductory statistics course that, given a random sample of data assumed to
come from a Gaussian distribution, we use a χ2 distribution, which can be
quite skewed, to form a confidence interval on σ2. Yet somehow there is a
widespread belief that the distribution of variance estimators in much more
complex situations should be well approximated by a normal distribution.
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Fig. 1.8 Signed square root, ζ , of the likelihood ratio test statistic as a function of
log(σ1), of σ1 and of σ2

1 . The vertical lines are the endpoints of 50%, 80%, 90%, 95%
and 99% confidence intervals.

It is nonsensical to believe that. In most cases summarizing the precision of
a variance component estimate by giving an approximate standard error is
woefully inadequate.

The pattern in the profile plot for β0 is sigmoidal (i.e. an elongated “S”-
shape). The pattern is symmetric about the estimate but curved in such a
way that the profile-based confidence intervals are wider than those based
on a normal approximation. We characterize this pattern as symmetric but
over-dispersed (relative to a normal distribution). Again, this pattern is not
unexpected. Estimators of the coefficients in a linear model without random
effects have a distribution which is a scaled Student’s T distribution. That
is, they follow a symmetric distribution that is over-dispersed relative to the
normal.

The pattern in the profile zeta plot for σ1 is more complex. Fig. 1.8 shows
the profile zeta plot on the scale of log(σ1), σ1 and σ2

1 . Notice that the profile
zeta plot for log(σ1) is very close to linear to the right of the estimate but
flattens out on the left. That is, σ1 behaves like σ in that its profile zeta
plot is more-or-less a straight line on the logarithmic scale, except when σ1
is close to zero. The model loses sensitivity to values of σ1 that are close to
zero. If, as in this case, zero is within the “region of interest” then we should
expect that the profile zeta plot will flatten out on the left hand side.

1.5.3 Profile Pairs Plots

A profiled deviance object, such as pr1, not only provides information on
the sensitivity of the model fit to changes in parameters, it also tells us how
the parameters influence each other. When we re-fit the model subject to a
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Scatter Plot Matrix
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Fig. 1.9 Profile pairs plot for the parameters in model fm1. The contour lines corre-
spond to two-dimensional 50%, 80%, 90%, 95% and 99% marginal confidence regions
based on the likelihood ratio. Panels below the diagonal represent the (ζi,ζ j) param-
eters; those above the diagonal represent the original parameters.

constraint such as, say, σ1 = 60, we obtain the conditional estimates for the
other parameters — σ and β0 in this case. The conditional estimate of, say,
σ as a function of σ1 is called the profile trace of σ on σ1. Plotting such
traces provides valuable information on how the parameters in the model are
influenced by each other.

The profile pairs plot, obtained as

> splom(pr1)

and shown in Fig. 1.9 shows the profile traces along with interpolated contours
of the two-dimensional profiled deviance function. The contours are chosen to
correspond to the two-dimensional marginal confidence regions at particular
confidence levels.
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1.5 Assessing the Variability of the Parameter Estimates 21

Because this plot may be rather confusing at first we will explain what is
shown in each panel. To make it easier to refer to panels we assign them (x,y)
coordinates, as in a Cartesian coordinate system. The columns are numbered
1 to 3 from left to right and the rows are numbered 1 to 3 from bottom to
top. Note that the rows are numbered from the bottom to the top, like the
y-axis of a graph, not from top to bottom, like a matrix.

The diagonal panels show the ordering of the parameters: σ1 first, then
log(σ) then β0. Panels above the diagonal are in the original scale of the
parameters. That is, the top-left panel, which is the (1,3) position, has σ1 on
the horizontal axis and β0 on the vertical axis.

In addition to the contour lines in this panel, there are two other lines,
which are the profile traces of σ1 on β0 and of β0 on σ1. The profile trace of β0
on σ1 is a straight horizontal line, indicating that the conditional estimate of
β0, given a value of σ1, is constant. Again, this is a consequence of the simple
model form and the balanced data set. The other line in this panel, which is
the profile trace of σ1 on β0, is curved. That is, the conditional estimate of
σ1 given β0 depends on β0. As β0 moves away from the estimate, β̂0, in either
direction, the conditional estimate of σ1 increases.

We will refer to the two traces on a panel as the “horizontal trace” and
“vertical trace”. They are not always perfectly horizontal and vertical lines
but the meaning should be clear from the panel because one trace will always
be more horizontal and the other will be more vertical. The one that is more
horizontal is the trace of the parameter on the y axis as a function of the
parameter on the horizontal axis, and vice versa.

The contours shown on the panel are interpolated from the profile zeta
function and the profile traces, in the manner described in Bates and Watts
[1988, Chapter 6]. One characteristic of a profile trace, which we can verify
visually in this panel, is that the tangent to a contour must be vertical where
it intersects the horizontal trace and horizontal where it intersects the vertical
trace.

The (2,3) panel shows β0 versus log(σ). In this case the traces actually
are horizontal and vertical straight lines. That is, the conditional estimate of
β0 doesn’t depend on log(σ) and the conditional estimate of log(σ) doesn’t
depend on β0. Even in this case, however, the contour lines are not concentric
ellipses, because the deviance is not perfectly quadratic in these parameters.
That is, the zeta functions, ζ (β0) and ζ (log(σ)), are not linear.

The (1,2) panel, showing log(σ) versus σ1 shows distortion along both
axes and nonlinear patterns in both traces. When σ1 is close to zero the
conditional estimate of log(σ) is larger than when σ1 is large. In other words
small values of σ1 inflate the estimate of log(σ) because the variability that
would be explained by the random effects gets incorporated into the residual
noise term.

Panels below the diagonal are on the ζ scale, which is why the axes on
each of these panels span the same range, approximately −3 to +3, and the
profile traces always cross at the origin. Thus the (3,1) panel shows ζ (σ1)
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22 1 A Simple, Linear, Mixed-effects Model

on the vertical axis versus ζ (β0) on the horizontal. These panels allow us
to see distortions from an elliptical shape due to nonlinearity of the traces,
separately from the one-dimensional distortions caused by a poor choice of
scale for the parameter. The ζ scales provide, in some sense, the best possible
set of single-parameter transformations for assessing the contours. On the ζ
scales the extent of a contour on the horizontal axis is exactly the same as
the extent on the vertical axis and both are centered about zero.

Another way to think of this is that, if we would have profiled σ2
1 instead

of σ1, we would change all the panels in the first column but the panels on
the first row would remain the same.

1.6 Assessing the Random Effects

In Sect. 1.4.1 we mentioned that what are sometimes called the BLUPs (or
best linear unbiased estimators) of the random effects, B, are the conditional
modes evaluated at the parameter estimates, and that they can be calculated
as b̃θ̂ = Λθ̂ ũθ̂ .

These values are often considered as some sort of “estimates” of the ran-
dom effects. It can be helpful to think of them this way but it can also be
misleading. As we have stated, the random effects are not, strictly speak-
ing, parameters—they are unobserved random variables. We don’t estimate
the random effects in the same sense that we estimate parameters. In-
stead, we consider the conditional distribution of B given the observed data,
(B|Y = y).

Because the unconditional distribution, B ∼N (0,Σθ ) is continuous, the
conditional distribution, (B|Y = y) will also be continuous. In general, the
mode of a probability density is the point of maximum density, so the phrase
“conditional mode” refers to the point at which this conditional density is
maximized. Because this definition relates to the probability model, the values
of the parameters are assumed to be known. In practice, of course, we don’t
know the values of the parameters (if we did there would be no purpose
in forming the parameter estimates), so we use the estimated values of the
parameters to evaluate the conditional modes.

Those who are familiar with the multivariate Gaussian distribution may
recognize that, because both B and (Y |B = b) are multivariate Gaussian,
(B|Y = y) will also be multivariate Gaussian and the conditional mode will
also be the conditional mean of B, given Y = y. This is the case for a linear
mixed model but it does not carry over to other forms of mixed models. In the
general case all we can say about ũ or b̃ is that they maximize a conditional
density, which is why we use the term “conditional mode” to describe these
values. We will only use the term “conditional mean” and the symbol, µ, in
reference to E(Y |B = b), which is the conditional mean of Y given B, and
an important part of the formulation of all types of mixed-effects models.
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The ranef extractor returns the conditional modes.

> ranef(fm1ML)

$Batch

(Intercept)

A -16.628221

B 0.369516

C 26.974670

D -21.801445

E 53.579824

F -42.494343

Applying str to the result of ranef

> str(ranef(fm1ML))

List of 1

$ Batch:'data.frame': 6 obs. of 1 variable:

..$ (Intercept): num [1:6] -16.628 0.37 26.975 -21.801 53.58 ...

- attr(*, "class")= chr "ranef.mer"

shows that the value is a list of data frames. In this case the list is of length 1
because there is only one random-effects term, (1|Batch), in the model and,
hence, only one grouping factor, Batch, for the random effects. There is only
one column in this data frame because the random-effects term, (1|Batch), is
a simple, scalar term.

To make this more explicit, random-effects terms in the model formula are
those that contain the vertical bar ("|") character. The Batch variable is the
grouping factor for the random effects generated by this term. An expression
for the grouping factor, usually just the name of a variable, occurs to the right
of the vertical bar. If the expression on the left of the vertical bar is 1, as it
is here, we describe the term as a simple, scalar, random-effects term. The
designation “scalar” means there will be exactly one random effect generated
for each level of the grouping factor. A simple, scalar term generates a block
of indicator columns — the indicators for the grouping factor — in Z. Because
there is only one random-effects term in this model and because that term
is a simple, scalar term, the model matrix Z for this model is the indicator
matrix for the levels of Batch.

In the next chapter we fit models with multiple simple, scalar terms and, in
subsequent chapters, we extend random-effects terms beyond simple, scalar
terms. When we have only simple, scalar terms in the model, each term has
a unique grouping factor and the elements of the list returned by ranef can
be considered as associated with terms or with grouping factors. In more
complex models a particular grouping factor may occur in more than one
term, in which case the elements of the list are associated with the grouping
factors, not the terms.

Given the data, y, and the parameter estimates, we can evaluate a measure
of the dispersion of (B|Y = y). In the case of a linear mixed model, this is
the conditional standard deviation, from which we can obtain a prediction
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Fig. 1.10 95% prediction intervals on the random effects in fm1ML, shown as a dot-
plot.

Fig. 1.11 95% prediction
intervals on the random
effects in fm1ML versus
quantiles of the standard
normal distribution.
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interval. The ranef extractor takes an optional argument, postVar = TRUE,
which adds these dispersion measures as an attribute of the result. (The
name stands for “posterior variance”, which is a misnomer that had become
established as an argument name before I realized that it wasn’t the correct
term.)

We can plot these prediction intervals using

> dotplot(ranef(fm1ML, postVar = TRUE))

(Fig. 1.10), which provides linear spacing of the levels on the y axis, or using

> qqmath(ranef(fm1ML, postVar=TRUE))

(Fig. 1.11), where the intervals are plotted versus quantiles of the standard
normal.

The dotplot is preferred when there are only a few levels of the grouping
factor, as in this case. When there are hundreds or thousands of random
effects the qqmath form is preferred because it focuses attention on the “im-
portant few” at the extremes and de-emphasizes the “trivial many” that are
close to zero.
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1.7 Chapter Summary

A considerable amount of material has been presented in this chapter, espe-
cially considering the word “simple” in its title (it’s the model that is simple,
not the material). A summary may be in order.

A mixed-effects model incorporates fixed-effects parameters and random
effects, which are unobserved random variables, B. In a linear mixed model,
both the unconditional distribution of B and the conditional distribution,
(Y |B = b), are multivariate Gaussian distributions. Furthermore, this con-
ditional distribution is a spherical Gaussian with mean, µ, determined by the
linear predictor, Zb + Xβ . That is,

(Y |B = b)∼N (Zb + Xβ ,σ2In).

The unconditional distribution of B has mean 0 and a parameterized q× q
variance-covariance matrix, Σθ .

In the models we considered in this chapter, Σθ , is a simple multiple of the
identity matrix, I6. This matrix is always a multiple of the identity in models
with just one random-effects term that is a simple, scalar term. The reason
for introducing all the machinery that we did is to allow for more general
model specifications.

The maximum likelihood estimates of the parameters are obtained by min-
imizing the deviance. For linear mixed models we can minimize the profiled
deviance, which is a function of θ only, thereby considerably simplifying the
optimization problem.

To assess the precision of the parameter estimates, we profile the deviance
function with respect to each parameter and apply a signed square root trans-
formation to the likelihood ratio test statistic, producing a profile zeta func-
tion for each parameter. These functions provide likelihood-based confidence
intervals for the parameters. Profile zeta plots allow us to visually assess the
precision of individual parameters. Profile pairs plots allow us to visualize the
pairwise dependence of parameter estimates and two-dimensional marginal
confidence regions.

Prediction intervals from the conditional distribution of the random effects,
given the observed data, allow us to assess the precision of the random effects.

Exercises

These exercises and several others in this book use data sets from the MEMSS

package for R. You will need to ensure that this package is installed before
you can access the data sets.

To load a particular data set, either attach the package

> library(MEMSS)
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Fig. 1.12 Travel time for an ultrasonic wave test on 6 rails

or load just the one data set
> data(Rail, package = "MEMSS")

1.1. Check the documentation, the structure (str) and a summary of the Rail

data (Fig. 1.12) from the MEMSS package. Note that if you used data to access
this data set then you must use
> help(Rail, package = "MEMSS")

to display the documentation for it.

1.2. Fit a model with travel as the response and a simple, scalar random-
effects term for the variable Rail. Use the REML criterion, which is the de-
fault. Create a dotplot of the conditional modes of the random effects.

1.3. Refit the model using maximum likelihood. Check the parameter esti-
mates and, in the case of the fixed-effects parameter, its standard error. In
what ways have the parameter estimates changed? Which parameter esti-
mates have not changed?

1.4. Profile the fitted model and construct 95% profile-based confidence in-
tervals on the parameters. Is the confidence interval on σ1 close to being
symmetric about the estimate? Is the corresponding interval on log(σ1) close
to being symmetric about its estimate?

1.5. Create the profile zeta plot for this model. For which parameters are
there good normal approximations?

1.6. Create a profile pairs plot for this model. Does the shape of the deviance
contours in this model mirror those in Fig. 1.9?

1.7. Plot the prediction intervals on the random effects from this model. Do
any of these prediction intervals contain zero? Consider the relative mag-
nitudes of σ̂1 and σ̂ in this model compared to those in model fm1 for the
Dyestuff data. Should these ratios of σ1/σ lead you to expect a different
pattern of prediction intervals in this plot than those in Fig. 1.10?
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