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R packages

I Packages incorporate functions, data and documentation.

I You can produce packages for private or in-house use or you
can contribute your package to the Comprehensive R Archive
Network (CRAN), http://cran.R-project.org

I We will be using the lme4 package from CRAN. Install it from
the Packages menu item or with
> install.packages("lme4")

I You only need to install a package once. If a new version
becomes available you can update (see the menu item).

I To use a package in an R session you attach it using
> require(lme4)

or
> library(lme4)

(This usage causes widespread confusion of the terms
“package” and “library”.)

Accessing documentation

I To be added to CRAN, a package must pass a series of quality
control checks. In particular, all functions and data sets must
be documented. Examples and tests can also be included.

I The data function provides names and brief descriptions of
the data sets in a package.
> data(package = "lme4")

Data sets in package ’lme4’:

Dyestuff Yield of dyestuff by batch

Dyestuff2 Yield of dyestuff by batch

Pastes Paste strength by batch and cask

Penicillin Variation in penicillin testing

cake Breakage angle of chocolate cakes

cbpp Contagious bovine pleuropneumonia

sleepstudy Reaction times in a sleep deprivation study

I Use ? followed by the name of a function or data set to view
its documentation. If the documentation contains an example
section, you can execute it with the example function.



Effects - fixed and random

I Mixed-effects models, like many statistical models, describe
the relationship between a response variable and one or more
covariates recorded with it.

I The models we will discuss are based on a linear predictor
expression incorporating coefficients that are estimated from
the observed data.

I Coefficients associated with the levels of a categorical
covariate are sometimes called the effects of the levels.

I When the levels of a covariate are fixed and reproducible (e.g.
a covariate sex that has levels male and female) we
incorporate them as fixed-effects parameters.

I When the levels of a covariate correspond to the particular
observational or experimental units in the experiment we
incorporate them as random effects.

The Dyestuff data set

I The Dyestuff, Penicillin and Pastes data sets all come
from the classic book Statistical Methods in Research and
Production, edited by O.L. Davies and first published in 1947.

I The Dyestuff data are a balanced one-way classification of
the Yield of dyestuff from samples produced from six Batches
of an intermediate product. See ?Dyestuff.

> str(Dyestuff)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635

The effect of the batches

I To emphasize that Batch is categorical, we use letters instead
of numbers to designate the levels.

I Because there is no inherent ordering of the levels of Batch,
we will reorder the levels if, say, doing so can make a plot
more informative.

I The particular batches observed are just a selection of the
possible batches and are entirely used up during the course of
the experiment.

I It is not particularly important to estimate and compare yields
from these batches. Instead we wish to estimate the
variability in yields due to batch-to-batch variability.

I The Batch factor will be used in random-effects terms in
models that we fit.

Dyestuff data plot
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I The line joins the mean yields of the six batches, which have
been reordered by increasing mean yield.

I The vertical positions are jittered slightly to reduce
overplotting. The lowest yield for batch A was observed on
two distinct preparations from that batch.



A mixed-effects model for the dyestuff yield

> fm1 <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff)
> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

325.7 329.9 -159.8 327.4 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1764.0 42.001

Residual 2451.3 49.510

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.81

I Fitted model fm1 has one fixed-effect parameter, the mean
yield, and one random-effects term, generating a simple,
scalar random effect for each level of Batch.

Extracting information from the fitted model

I fm1 is an object of class "mer" (mixed-effects representation).

I There are many extractor functions that can be applied to
such objects.

> fixef(fm1)

(Intercept)

1527.5

> ranef(fm1, drop = TRUE)

$Batch

A B C D E F

-17.60800 0.39129 28.56409 -23.08605 56.73689 -44.99823

> fitted(fm1)

[1] 1509.9 1509.9 1509.9 1509.9 1509.9 1527.9 1527.9 1527.9 1527.9

[10] 1527.9 1556.1 1556.1 1556.1 1556.1 1556.1 1504.4 1504.4 1504.4

[19] 1504.4 1504.4 1584.2 1584.2 1584.2 1584.2 1584.2 1482.5 1482.5

[28] 1482.5 1482.5 1482.5

Definition of mixed-effects models

I Models with random effects are often written like

yij = µ+bi+εij , bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2), i = 1, . . . , I, j = 1, . . . , Ji

I This scalar notation quickly becomes unwieldy, degenerating
into “subscript fests”. We will use a vector/matrix notation.

I A mixed-effects model incorporates two vector-valued random
variables: the response vector, Y , and the random effects
vector, B. We observe the value, y, of Y . We do not observe
the value of B.

I In the models we will consider, the random effects are
modeled as a multivariate Gaussian (or “normal”) random
variable, B ∼ N (0,Σ(θ)), where θ is a vector of
variance-component parameters.

Linear mixed models

I The conditional distribution, (Y |B = b), depends on b only
through its mean, µY|B=b.

I The conditional mean, µY|B=b, depends on b and on the
fixed-effects parameter vector, β, through a linear predictor
expression, Zb+Xβ. The model matrices Z and X are
determined from the form of the model and the values of the
covariates.

I In a linear mixed model the conditional distribution is a
“spherical” multivariate Gaussian

(Y |B = b) ∼ N (Zb+Xβ, σ2In)

I The scalar σ is the common scale parameter; the dimension of
y is n, b is q and β is p so Z is n× q and X is n× p.



Simple, scalar random effects terms

I A term like (1|Batch) in an lmer formula is called a simple,
scalar random-effects term.

I The expression on the right of the "|" operator (usually just
the name of a variable) is evaluated as a factor, called the
grouping factor for the term.

I Suppose we have k such terms with ni, i = 1, . . . , k levels in
the ith term’s grouping factor. A scalar random-effects term
generates one random effect for each level of the grouping
factor. If all the random effects terms are scalar terms then
q =

∑k
i=1 ni.

I The model matrix Z is the horizontal concatenation of k
matrices. For a simple, scalar term, the ith vertical slice,
which has ni columns, is the indicator columns for the ni

levels of the ith grouping factor.

Structure of the unconditional variance-covariance

I Just as the matrix Z is the horizontal concatenation of
matrices generated by individual random-effects terms, the
(unconditional) variance-covariance matrix, Σ, is
block-diagonal in k blocks. In other words, the unconditional
distributions of random effects from different terms in the
model are independent. (However, the conditional
distributions, given the observed data, (B|Y = y), are not
independent.)

I If the ith term is a simple, scalar term then the ith diagonal
block is a multiple of the identity, σ2

i Ini .

I This means that unconditional distributions of random effects
corresponding to different levels of the grouping factor are
independent.

Model matrices for model fm1

I The formula for model fm1 has a single fixed-effects term, 1,
and one simple, scalar random-effects term, (1|Batch).

I The model matrix, Z, whose transpose is stored in a slot
called Zt, is the matrix of indicators for the six levels of Batch.

I The model matrix, X, is 30× 1. All its elements are unity.

> str(model.matrix(fm1))

num [1:30, 1] 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "assign")= int 0

> fm1@Zt

6 x 30 sparse Matrix of class "dgCMatrix"

[1,] 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . .

[2,] . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . .

[3,] . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . .

[4,] . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . .

[5,] . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . .

[6,] . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1

Conditional means of the random effects

I Technically we do not provide “estimates” of the random
effects because they are not parameters.

I One answer to the question, “so what are those numbers
provided by ranef anyway?” is that they are BLUPs (Best
Linear Unbiased Predictors) of the random effects. The
acronym is attractive but not very informative (what is a
“linear unbiased predictor” and in what sense are these the
“best”?). Also, the concept does not generalize.

I A better answer is that those values are the conditional
means, µB|Y=y, evaluated at the estimated parameter values.
Regrettably, we can only evaluate the conditional means for
linear mixed models.

I However, these values are also the conditional modes and that
concept does generalize to other types of mixed models.



Caterpillar plot for fm1

I For linear mixed models the conditional distribution of the
random effects, given the data, written (B|Y = y), is again a
multivariate Gaussian distribution.

I We can evaluate the means and standard deviations of the
individual conditional distributions, (Bj |Y = y), j = 1, . . . , q.
We show these in the form of a 95% prediction interval, with
the levels of the grouping factor arranged in increasing order
of the conditional mean.

I These are sometimes called “caterpillar plots”.
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REML estimates versus ML estimates

I The default parameter estimation criterion for linear mixed
models is restricted (or “residual”) maximum likelihood
(REML).

I Maximum likelihood (ML) estimates (sometimes called “full
maximum likelihood”) can be requested by specifying REML =

FALSE in the call to lmer.

I Generally REML estimates of variance components are
preferred. ML estimates are known to be biased. Although
REML estimates are not guaranteed to be unbiased, they are
usually less biased than ML estimates.

I Roughly, the difference between REML and ML estimates of
variance components is comparable to estimating σ2 in a
fixed-effects regression by SSR/(n− p) versus SSR/n, where
SSR is the residual sum of squares.

I For a balanced, one-way classification like the Dyestuff data,
the REML and ML estimates of the fixed-effects are identical.

Re-fitting the model for ML estimates

> (fm1M <- update(fm1, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

333.3 337.5 -163.7 327.3 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.3 37.26

Residual 2451.3 49.51

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

(The extra parentheses around the assignment cause the value to
be printed. Generally the results of assignments are not printed.)

Verbose fitting

I When fitting a large model or if the estimates of the variance
components seem peculiar, it is a good idea to monitor the
progress of the iterations in optimizing the deviance or the
REML criterion.

I The optional argument verbose = TRUE causes lmer to print
iteration information during the optimzation of the parameter
estimates.

I The quantity being minimized is the profiled deviance or the
profiled REML criterion of the model. The deviance is
negative twice the log-likelihood. It is profiled in the sense
that it is a function of θ only — β and σ are at their
conditional estimates.



Obtain the verbose output for fitting fm1

> invisible(update(fm1, verbose = TRUE))

0: 319.76562: 0.730297

1: 319.73555: 0.962431

2: 319.65736: 0.869488

3: 319.65441: 0.844018

4: 319.65428: 0.848469

5: 319.65428: 0.848327

6: 319.65428: 0.848324

I The first number on each line is the iteration count —
iteration 0 is at the starting value for θ.

I The second number is the profiled deviance or profiled REML
criterion — the quantity being minimized.

I The third and subsequent numbers are the parameter vector θ.

Estimates of variance components can be zero

I We have been careful to state the variance of the random
effects is ≥ 0.

I For some data sets the maximum likelihood or REML
estimate, σ̂2

b is zero.

I Box and Tiao (1973) provide simulated data with a structure
like the Dyestuff data illustrating this.

> str(Dyestuff2)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 7.3 3.85 2.43 9.57 7.99 ...

Plot of the Dyestuff2 data

Simulated response (dimensionless)
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I For these data the batch-to-batch variability is not large
compared to the within-batch variability.

Fitting the model to Dyestuff2

> (fm1A <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff2, verbose = TRUE))

0: 166.04147: 0.730297

1: 161.82828: 0.00000

2: 161.82828: 0.00000

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff2

AIC BIC logLik deviance REMLdev

167.8 172.0 -80.91 162.9 161.8

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 0.000 0.0000

Residual 13.806 3.7157

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.6656 0.6784 8.352



A trivial mixed-effects model is a fixed-effects model

I The mixed model fm1A with an estimated variance σ̂2
b = 0 is

equivalent to a model with only fixed-effects terms.

> summary(lm1 <- lm(Yield ~ 1, Dyestuff2))

Call:

lm(formula = Yield ~ 1, data = Dyestuff2)

Residuals:

Min 1Q Median 3Q Max

-6.5576 -2.9006 -0.3006 2.4854 7.7684

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6656 0.6784 8.352 3.32e-09

Residual standard error: 3.716 on 29 degrees of freedom

> logLik(lm1)

’log Lik.’ -81.43652 (df=2)

Recap of the Dyestuff model

I The model is fit as
lmer(formula = Yield ~ 1 + (1 | Batch), data = Dyestuff)

I There is one random-effects term, (1|Batch), in the model
formula. It is a simple, scalar term for the grouping factor
Batch with n1 = 6 levels. Thus q = 6.

I The model matrix Z is the 30× 6 matrix of indicators of the
levels of Batch.

I The relative variance-covariance matrix, Σ, is a nonnegative
multiple of the 6× 6 identity matrix I6.

I The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 30× 1 model matrix X are unity.

The Penicillin data (see also the ?Penicillin description)
> str(Penicillin)

’data.frame’: 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2 ...

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ...

> xtabs(~sample + plate, Penicillin)

plate

sample a b c d e f g h i j k l m n o p q r s t u v w x

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I These are measurements of the potency (measured by the
diameter of a clear area on a Petri dish) of penicillin samples
in a balanced, unreplicated two-way crossed classification with
the test medium, plate.

Penicillin data plot
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Model with crossed simple random effects for Penicillin

> (fm2 <- lmer(diameter ~ 1 + (1 | plate) + (1 | sample),
+ Penicillin))

Linear mixed model fit by REML

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

AIC BIC logLik deviance REMLdev

338.9 350.7 -165.4 332.3 330.9

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.71691 0.84670

sample (Intercept) 3.73092 1.93156

Residual 0.30242 0.54992

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.9722 0.8085 28.41

Fixed and random effects for fm2

I The model for the n = 144 observations has p = 1
fixed-effects parameter and q = 30 random effects from k = 2
random effects terms in the formula.

> fixef(fm2)

(Intercept)

22.972

> ranef(fm2, drop = TRUE)

$plate

a b c d e f

0.804547 0.804547 0.181672 0.337391 0.025953 -0.441203

g h i j k l

-1.375516 0.804547 -0.752641 -0.752641 0.960266 0.493109

m n o p q r

1.427422 0.493109 0.960266 0.025953 -0.285484 -0.285484

s t u v w x

-1.375516 0.960266 -0.908360 -0.285484 -0.596922 -1.219797

$sample

A B C D E F

2.187246 -1.010563 1.938066 -0.096903 -0.013843 -3.004002

Prediction intervals for random effects
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Model matrix Z for fm2

I Because the model matrix Z is generated from k = 2 simple,
scalar random effects terms, it consists of two sets of indicator
columns.

I The structure of Z ′ is shown below. (Generally we will show
the transpose of these model matrices - they fit better on
slides.)
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Models with crossed random effects

I Many people believe that mixed-effects models are equivalent
to hierarchical linear models (HLMs) or “multilevel models”.
This is not true. The plate and sample factors in fm2 are
crossed. They do not represent levels in a hierarchy.

I There is no difficulty in defining and fitting models with
crossed random effects (meaning random-effects terms whose
grouping factors are crossed). However, fitting models with
crossed random effects can be somewhat slower.

I The crucial calculation in each lmer iteration is evaluation of
a q × q sparse, lower triangular, Cholesky factor, L(θ),
derived from Z and Σ(θ). Crossing of grouping factors
increases the number of nonzeros in L(θ) and causes some
“fill-in” of L relative to Z ′Z.

All HLMs are mixed models but not vice-versa
I Even though Raudenbush and Bryk (2002) do discuss models

for crossed factors in their HLM book, such models are not
hierarchical.

I Experimental situations with crossed random factors, such as
“subject” and “stimulus”, are common. We can, and should,
model such data according to its structure.

I In longitudinal studies of subjects in social contexts (e.g.
students in classrooms or in schools) we almost always have
partial crossing of the subject and the context factors,
meaning that, over the course of the study, a particular
student may be observed in more than one class but not all
students are observed in all classes. The student and class
factors are neither fully crossed nor strictly nested.

I For longitudinal data, “nested” is only important if it means
“nested across time”. “Nested at a particular time” doesn’t
count.

I lme4 handles fully or partially crossed factors gracefully.

Recap of the Penicillin model

I The model formula is
diameter ~ 1 + (1 | plate) + (1 | sample)

I There are two random-effects terms, (1|plate) and
(1|sample). Both are simple, scalar random effects terms,
with n1 = 24 and n2 = 6 levels, respectively. Thus
q = q1n1 + q2n2 = 30.

I The model matrix Z is the 144× 30 matrix created from two
sets of indicator columns.

I The relative variance-covariance matrix, Σ, is block diagonal
in two blocks that are nonnegative multiples of identity
matrices.

I The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 144× 1 model matrix X are unity.

The Pastes data (see also the ?Pastes description)

> str(Pastes)

’data.frame’: 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.9 ...

$ batch : Factor w/ 10 levels "A","B","C","D",..: 1 1 1 1 1 1 2 2 2 2 ...

$ cask : Factor w/ 3 levels "a","b","c": 1 1 2 2 3 3 1 1 2 2 ...

$ sample : Factor w/ 30 levels "A:a","A:b","A:c",..: 1 1 2 2 3 3 4 4 5 5 ...

> xtabs(~batch + sample, Pastes, sparse = TRUE)

10 x 30 sparse Matrix of class "dgCMatrix"

A 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . .

D . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2



Structure of the Pastes data

I The sample factor is nested within the batch factor. Each
sample is from one of three casks selected from a particular
batch.

I Note that there are 30, not 3, distinct samples.

I We can label the casks as ‘a’, ‘b’ and ‘c’ but then the cask

factor by itself is meaningless (because cask ‘a’ in batch ‘A’ is
unrelated to cask ‘a’in batches ‘B’, ‘C’, . . . ). The cask factor
is only meaningful within a batch.

I Only the batch and cask factors, which are apparently
crossed, were present in the original data set. cask may be
described as being nested within batch but that is not
reflected in the data. It is implicitly nested, not explicitly
nested.

I You can save yourself a lot of grief by immediately creating
the explicitly nested factor. The recipe is

> Pastes <- within(Pastes, sample <- factor(batch:cask))

Avoid implicitly nested representations

I The lme4 package allows for very general model specifications.
It does not require that factors associated with random effects
be hierarchical or “multilevel” factors in the design.

I The same model specification can be used for data with
nested or crossed or partially crossed factors. Nesting or
crossing is determined from the structure of the factors in the
data, not the model specification.

I You can avoid confusion about nested and crossed factors by
following one simple rule: ensure that different levels of a
factor in the experiment correspond to different labels of the
factor in the data.

I Samples were drawn from 30, not 3, distinct casks in this
experiment. We should specify models using the sample factor
with 30 levels, not the cask factor with 3 levels.

Pastes data plot
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A model with nested random effects

> (fm3 <- lmer(strength ~ 1 + (1 | batch) + (1 | sample),
+ Pastes))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | batch) + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

255 263.4 -123.5 248.0 247

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 8.4337 2.9041

batch (Intercept) 1.6573 1.2874

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.6768 88.73



Random effects from model fm3
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Batch-to-batch variability is low compared to sample-to-sample.

Dimensions and relationships in fm3

I There are n = 60 observations, p = 1 fixed-effects parameter,
k = 2 simple, scalar random-effects terms (q1 = q2 = 1) with
grouping factors having n1 = 30 and n2 = 10 levels.

I Because both random-effects terms are simple, scalar terms,
Σ(θ) is block-diagonal in two diagonal blocks of sizes 30 and
10, respectively. Z is generated from two sets of indicators.

10

20

30

10 20 30 40 50

Eliminate the random-effects term for batch?

I We have seen that there is little batch-to-batch variability
beyond that induced by the variability of samples within
batches.

I We can fit a reduced model without that term and compare it
to the original model.

I Somewhat confusingly, model comparisons from likelihood
ratio tests are obtained by calling the anova function on the
two models. (Put the simpler model first in the call to anova.)

I Sometimes likelihood ratio tests can be evaluated using the
REML criterion and sometimes they can’t. Instead of learning
the rules of when you can and when you can’t, it is easiest
always to refit the models with REML = FALSE before
comparing.

Comparing ML fits of the full and reduced models

> fm3M <- update(fm3, REML = FALSE)
> fm4M <- lmer(strength ~ 1 + (1 | sample), Pastes, REML = FALSE)
> anova(fm4M, fm3M)

Data: Pastes

Models:

fm4M: strength ~ 1 + (1 | sample)

fm3M: strength ~ 1 + (1 | batch) + (1 | sample)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm4M 3 254.40 260.69 -124.20

fm3M 4 255.99 264.37 -124.00 0.4072 1 0.5234



p-values of LR tests on variance components

I The likelihood ratio is a reasonable criterion for comparing
these two models. However, the theory behind using a χ2

distribution with 1 degree of freedom as a reference
distribution for this test statistic does not apply in this case.
The null hypothesis is on the boundary of the parameter
space.

I Even at the best of times, the p-values for such tests are only
approximate because they are based on the asymptotic
behavior of the test statistic. To carry the argument further,
all results in statistics are based on models and, as George
Box famously said, “All models are wrong; some models are
useful.”

LR tests on variance components (cont’d)

I In this case the problem with the boundary condition results
in a p-value that is larger than it would be if, say, you
compared this likelihood ratio to values obtained for data
simulated from the null hypothesis model. We say these
results are “conservative”.

I As a rule of thumb, the p-value for the χ2 test on a simple,
scalar term is roughly twice as large as it should be.

I In this case, dividing the p-value in half would not affect our
conclusion.

Updated model, REML estimates

> (fm4 <- update(fm4M, REML = TRUE))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

253.6 259.9 -123.8 248.4 247.6

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 9.9767 3.1586

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.5864 102.4

Recap of the analysis of the Pastes data

I The data consist of n = 60 observations on q1 = 30 samples
nested within q2 = 10 batches.

I The data are labelled with a cask factor with 3 levels but that
is an implicitly nested factor. Create the explicit factor sample

and ignore cask from then on.

I Specification of a model for nested factors is exactly the same
as specification of a model with crossed or partially crossed
factors — provided that you avoid using implicitly nested
factors.

I In this case the batch factor was inert — it did not “explain”
substantial variability in addition to that attributed to the
sample factor. We therefore prefer the simpler model.

I At the risk of “beating a dead horse”, notice that, if we had
used the cask factor in some way, we would still need to
create a factor like sample to be able to reduce the model.
The cask factor is only meaningful within batch.



This is all very nice, but . . .
I These methods are interesting but the results are not really

new. Similar results are quoted in Statistical Methods in
Research and Production, which is a very old book.

I The approach described in that book is actually quite
sophisticated, especially when you consider that the methods
described there, based on observed and expected mean
squares, are for hand calculation — in pre-calculator days!

I Why go to all the trouble of working with sparse matrices and
all that if you could get the same results with paper and
pencil? The one-word answer is balance.

I Those methods depend on the data being balanced. The
design must be completely balanced and the resulting data
must also be completely balanced.

I Balance is fragile. Even if the design is balanced, a single
missing or questionable observation destroys the balance.
Observational studies (as opposed to, say, laboratory
experiments) cannot be expected to yield balanced data sets.

I Also, the models involve only simple, scalar random effects
and do not incorporate covariates.

Structure of the classroom data

I The classroom data are a cross-section of students within
classes within schools. The mathgain variable is the difference
in mathematics achievement scores in grade 1 and
kindergarten.

I These data are quite unbalanced. The distribution of the
number of students observed per classroom is
> xtabs(~xtabs(~classid, classroom))

xtabs(~classid, classroom)

1 2 3 4 5 6 7 8 9 10

42 53 53 61 39 31 14 13 4 2
I Similarly, the distribution of the number of classes observed

per school is
> table(xtabs(~schoolid, unique(subset(classroom, select = c(classid,
+ schoolid)))))

1 2 3 4 5 9

13 34 26 21 12 1

Twelve schools, each with 5 classrooms

Mathematics gain from kindergarten to grade 1
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Simple, “unconditional” model for the classroom data

> (fm5 <- lmer(mathgain ~ 1 + (1 | classid) + (1 | schoolid),
+ classroom))

Linear mixed model fit by REML

Formula: mathgain ~ 1 + (1 | classid) + (1 | schoolid)

Data: classroom

AIC BIC logLik deviance REMLdev

11777 11797 -5884 11771 11769

Random effects:

Groups Name Variance Std.Dev.

classid (Intercept) 99.228 9.9613

schoolid (Intercept) 77.492 8.8030

Residual 1028.234 32.0661

Number of obs: 1190, groups: classid, 312; schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 57.427 1.443 39.79



Some comments on the “unconditional” model

I In the multilevel modeling literature a model such as fm5 that
does not incorporate fixed-effects terms for demographic
characteristics of the student, class or school, is called an
“unconditional” model.

I Notice that the dominant level of variability is the residual
variability. It is unlikely that random effects for both classes
and schools are needed when modeling these data.

I We have seen in Exercises 2 that there seem to be trends with
respect to the minority factor and the mathkind score but no
overall trends with respect to sex.

I A coefficient for a continuous covariate, such as mathkind, or
for fixed, reproducible levels of a factor like sex or minority is
incorporated in the fixed-effects terms.

Model-building approach

I Note that these unbalanced data have, for the most part, very
few classes per school (sometimes as few as 1) and very few
students per class (also sometimes as few as 1). Under these
circumstances, it is optimistic to expect to be able to partition
the variability across students, classes and schools.

I We should consider adding fixed-effects terms and perhaps
removing one of the random-effects terms.

I We will start by incorporating fixed-effects terms then revisit
the need for both random-effects terms.

I We will begin with the fixed-effects terms adopted as a final
model in chapter 4 of West, Welch and Ga lecki (2007).

I For brevity, we only display the output of model fits as this
contains enough information to reconstruct the call to lmer.

A model with fixed-effects terms

Linear mixed model fit by REML

Formula: mathgain ~ 1 + mathkind + minority + sex + ses + housepov + (1 | classid) + (1 | schoolid)

Data: classroom

AIC BIC logLik deviance REMLdev

11396 11442 -5689 11390 11378

Random effects:

Groups Name Variance Std.Dev.

classid (Intercept) 81.555 9.0308

schoolid (Intercept) 77.761 8.8182

Residual 734.420 27.1002

Number of obs: 1190, groups: classid, 312; schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 285.05700 11.02066 25.866

mathkind -0.47086 0.02228 -21.133

minorityY -7.75580 2.38493 -3.252

sexF -1.23457 1.65743 -0.745

ses 5.23966 1.24496 4.209

housepov -11.43829 9.93669 -1.151

Where are the p-values?!!

I The first thing that most users notice is that there are no
p-values for the fixed-effects coefficients! Calculating a p-value
for H0 : βj = 0 versus Ha : βj 6= 0 is not as straightforward as
it may seem. The ratio called a “t value” in the output does
not have a Student’s T distribution under the null hypothesis.

I For simple models fit to small, balanced data sets one can
calculate a p-value. Not so for unbalanced data. When the
number of groups and observations are large, approximations
don’t matter — you can consider the ratio as having a
standard normal distribution.

I The only time that you can calculate an “exact” p-value and
the difference between this and the standard normal dist’n is
important is for small, balanced data sets, which are exactly
the cases that appear in text books. People get very, very
upset if the values calculated by the software don’t agree
perfectly with the text book answers.

I Here, just say a coefficient is “significant” if |t| > 2.



Removing the insignificant term for sex

Linear mixed model fit by REML

Formula: mathgain ~ 1 + mathkind + minority + ses + housepov + (1 | classid) + (1 | schoolid)

Data: classroom

AIC BIC logLik deviance REMLdev

11397 11438 -5691 11390 11381

Random effects:

Groups Name Variance Std.Dev.

classid (Intercept) 81.095 9.0053

schoolid (Intercept) 77.604 8.8093

Residual 734.457 27.1009

Number of obs: 1190, groups: classid, 312; schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 284.70224 11.00854 25.862

mathkind -0.47137 0.02227 -21.170

minorityY -7.78040 2.38379 -3.264

ses 5.25695 1.24455 4.224

housepov -11.50123 9.92738 -1.159

Removing the insignificant term for housepov

Linear mixed model fit by REML

Formula: mathgain ~ mathkind + minority + ses + (1 | classid) + (1 | schoolid)

Data: classroom

AIC BIC logLik deviance REMLdev

11403 11439 -5695 11392 11389

Random effects:

Groups Name Variance Std.Dev.

classid (Intercept) 82.839 9.1016

schoolid (Intercept) 75.036 8.6623

Residual 734.608 27.1036

Number of obs: 1190, groups: classid, 312; schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 282.41821 10.84049 26.052

mathkind -0.47031 0.02225 -21.137

minorityY -8.29077 2.33879 -3.545

ses 5.36456 1.24066 4.324

Prediction intervals on random effects for class
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Normal probability plot of random effects for class
With many levels of the grouping factor, use a normal probability
plot of the prediction intervals for the random effects.
> qqmath(ranef(fm8, post = TRUE))$classid

Standard normal quantiles
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Normal probability plot of random effects for school

Standard normal quantiles
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Refit without random effects for class

Linear mixed model fit by maximum likelihood

Formula: mathgain ~ mathkind + minority + ses + (1 | schoolid)

Data: classroom

AIC BIC logLik deviance REMLdev

11415 11446 -5702 11403 11401

Random effects:

Groups Name Variance Std.Dev.

schoolid (Intercept) 97.87 9.893

Residual 789.14 28.092

Number of obs: 1190, groups: schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 282.30277 10.90127 25.896

mathkind -0.47045 0.02237 -21.027

minorityY -7.79570 2.35029 -3.317

ses 5.51947 1.24920 4.418

Check if random effects for class are significant

> fm8M <- update(fm8, REML = FALSE)
> anova(fm9M, fm8M)

Data: classroom

Models:

fm9M: mathgain ~ mathkind + minority + ses + (1 | schoolid)

fm8M: mathgain ~ mathkind + minority + ses + (1 | classid) + (1 | schoolid)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm9M 6 11415.5 11446.0 -5701.7

fm8M 7 11405.5 11441.1 -5695.8 11.967 1 0.0005415

I Contrary to what we saw in the plots, the random-effects term
for classid is significant even in the presence of the schoolid

term

I Part of the reason for this inconsistency is our incorporating
312 random effects at a “cost” of 1 parameter. In some way
we are undercounting the number of degrees of freedom
added to the model with this term.

A large observational data set

I A large U.S. university (not mine) provided data on the grade
point score (gr.pt) by student (id), instructor (instr) and
department (dept) from a 10 year period. I regret that I
cannot make these data available to others.

I These factors are unbalanced and partially crossed.

> str(anon.grades.df)

’data.frame’: 1721024 obs. of 9 variables:

$ instr : Factor w/ 7964 levels "10000","10001",..: 1 1 1 1 1 1 1 1 1 1 ...

$ dept : Factor w/ 106 levels "AERO","AFAM",..: 43 43 43 43 43 43 43 43 43 43 ...

$ id : Factor w/ 54711 levels "900000001","900000002",..: 12152 1405 23882 18875 18294 20922 4150 13540 5499 6425 ...

$ nclass : num 40 29 33 13 47 49 37 14 21 20 ...

$ vgpa : num NA NA NA NA NA NA NA NA NA NA ...

$ rawai : num 2.88 -1.15 -0.08 -1.94 3.00 ...

$ gr.pt : num 4 1.7 2 0 3.7 1.7 2 4 2 2.7 ...

$ section : Factor w/ 70366 levels "19959 AERO011A001",..: 18417 18417 18417 18417 9428 18417 18417 9428 9428 9428 ...

$ semester: num 19989 19989 19989 19989 19972 ...



A preliminary model

Linear mixed model fit by REML

Formula: gr.pt ~ (1 | id) + (1 | instr) + (1 | dept)

Data: anon.grades.df

AIC BIC logLik deviance REMLdev

3447389 3447451 -1723690 3447374 3447379

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 0.3085 0.555

instr (Intercept) 0.0795 0.282

dept (Intercept) 0.0909 0.301

Residual 0.4037 0.635

Number of obs: 1685394, groups: id, 54711; instr, 7915; dept, 102

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.1996 0.0314 102

Comments on the model fit

I n = 1685394, p = 1, k = 3, n1 = 54711, n2 = 7915,
n3 = 102, q1 = q2 = q3 = 1, q = 62728

I This model is sometimes called the “unconditional” model in
that it does not incorporate covariates beyond the grouping
factors.

I It takes less than an hour to fit an ”unconditional” model
with random effects for student (id), instructor (inst) and
department (dept) to these data.

I Naturally, this is just the first step. We want to look at
possible time trends and the possible influences of the
covariates.

I This is an example of what “large” and “unbalanced” mean
today. The size of the data sets and the complexity of the
models in mixed modeling can be formidable.

A model fit to a large data set (by today’s standards)

I Harold Doran recently fit a linear mixed model to the annual
achievement test results for the last 4 years in one of the
United States. There were n = 5212017 observations on a
total of n1 = 1876788 students and n2 = 47480 teachers.

I The models had simple, scalar random effects for student and
for teacher resulting in q = 1924268 (i.e. nearly 2 million!)

I There were a total of p = 29 fixed-effects parameters.

I At present Harold needed to fit the model to a subset and
only evaluate the conditional means for all the students and
teachers but we should be able to get around that limitation
and actually fit the model to all these responses and random
effects.

I I don’t know of other software that can be used to fit a model
this large.

Size of the decomposition for this large model

I The limiting factor on the memory size in such a model is the
Cholesky factor L(θ).

I In this case the x slot is itself over 1GB in size and the i slot
is over 0.5 GB.

I These are close to an inherent limit on atomic R objects (the
range of an index into an atomic object cannot exceed 231.

> str(L)

Formal class ’dCHMsimpl’ [package "Matrix"] with 10 slots

..@ x : num [1:174396181] 1.71 2.16 1.4 1.32 2.29 ...

..@ p : int [1:1924269] 0 2 4 5 7 9 10 12 14 15 ...

..@ i : int [1:174396181] 0 2 1 2 2 3 5 4 5 5 ...

..@ nz : int [1:1924268] 2 2 1 2 2 1 2 2 1 2 ...

..@ nxt : int [1:1924270] 1 2 3 4 5 6 7 8 9 10 ...

..@ prv : int [1:1924270] 1924269 0 1 2 3 4 5 6 7 8 ...

..@ colcount: int [1:1924268] 2 2 1 2 2 1 2 2 1 2 ...

..@ perm : int [1:1924268] 1922843 1886519 134451 1921046 1893309 183471 1912388 1888309 196670 1922626 ...

..@ type : int [1:4] 2 1 0 1

..@ Dim : int [1:2] 1924268 192426



Recap of simple, scalar random-effects terms

I For lmer a simple, scalar random effects term is of the form
(1|F).

I The number of random effects generated by the ith such term
is the number of levels, ni, of F (after dropping “unused”
levels — those that do not occur in the data. The idea of
having such levels is not as peculiar as it may seem if, say, you
are fitting a model to a subset of the original data.)

I Such a term contributes ni columns to Z. These columns are
the indicator columns of the grouping factor.

I Such a term contributes a diagonal block σ2
i Ini to Σ. The

multipliers σ2
i can be different for different terms. The term

contributes exactly one element (which happens to be σi/σ)
to θ.


