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Longitudinal data: sleepstudy

A model with random effects for intercept and slope

Conditional means

Simple longitudinal data

I Repeated measures data consist of measurements of a
response (and, perhaps, some covariates) on several
experimental (or observational) units.

I Frequently the experimental (observational) unit is Subject
and we will refer to these units as “subjects”. However, the
methods described here are not restricted to data on human
subjects.

I Longitudinal data are repeated measures data in which the
observations are taken over time.

I We wish to characterize the response over time within
subjects and the variation in the time trends between subjects.

I Frequently we are not as interested in comparing the
particular subjects in the study as much as we are interested
in modeling the variability in the population from which the
subjects were chosen.

Sleep deprivation data

I This laboratory experiment measured the effect of sleep
deprivation on cognitive performance.

I There were 18 subjects, chosen from the population of
interest (long-distance truck drivers), in the 10 day trial.
These subjects were restricted to 3 hours sleep per night
during the trial.

I On each day of the trial each subject’s reaction time was
measured. The reaction time shown here is the average of
several measurements.

I These data are balanced in that each subject is measured the
same number of times and on the same occasions.



Reaction time versus days by subject
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Comments on the sleep data plot

I The plot is a “trellis” or “lattice” plot where the data for each
subject are presented in a separate panel. The axes are
consistent across panels so we may compare patterns across
subjects.

I A reference line fit by simple linear regression to the panel’s
data has been added to each panel.

I The aspect ratio of the panels has been adjusted so that a
typical reference line lies about 45◦ on the page. We have the
greatest sensitivity in checking for differences in slopes when
the lines are near ±45◦ on the page.

I The panels have been ordered not by subject number (which
is essentially a random order) but according to increasing
intercept for the simple linear regression. If the slopes and the
intercepts are highly correlated we should see a pattern across
the panels in the slopes.

Assessing the linear fits

I In most cases a simple linear regression provides an adequate
fit to the within-subject data.

I Patterns for some subjects (e.g. 350, 352 and 371) deviate
from linearity but the deviations are neither widespread nor
consistent in form.

I There is considerable variation in the intercept (estimated
reaction time without sleep deprivation) across subjects – 200
ms. up to 300 ms. – and in the slope (increase in reaction
time per day of sleep deprivation) – 0 ms./day up to 20
ms./day.

I We can examine this variation further by plotting confidence
intervals for these intercepts and slopes. Because we use a
pooled variance estimate and have balanced data, the
intervals have identical widths.

I We again order the subjects by increasing intercept so we can
check for relationships between slopes and intercepts.

95% conf int on within-subject intercept and slope
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Days

These intervals reinforce our earlier impressions of considerable
variability between subjects in both intercept and slope but little
evidence of a relationship between intercept and slope.



A preliminary mixed-effects model

I We begin with a linear mixed model in which the fixed effects
[β1, β2]T are the representative intercept and slope for the
population and the random effects
bi = [bi1, bi2]T, i = 1, . . . , 18 are the deviations in intercept
and slope associated with subject i.

I The random effects vector, b, consists of the 18 intercept
effects followed by the 18 slope effects.
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Fitting the model
> (fm1 <- lmer(Reaction ~ Days + (Days | Subject),
+ sleepstudy))

Linear mixed model fit by REML

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1756 1775 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.092 24.7405

Days 35.072 5.9221 0.066

Residual 654.941 25.5918

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84

Days 10.467 1.546 6.77

Correlation of Fixed Effects:

(Intr)

Days -0.138

Terms and matrices

I The term Days in the formula generates a model matrix X
with two columns, the intercept column and the numeric Days
column. (The intercept is included unless suppressed.)

I The term (Days|Subject) generates a vector-valued random
effect (intercept and slope) for each of the 18 levels of the
Subject factor.

A model with uncorrelated random effects

I The data plots gave little indication of a systematic
relationship between a subject’s random effect for slope and
his/her random effect for the intercept. Also, the estimated
correlation is quite small.

I We should consider a model with uncorrelated random effects.
To express this we use two random-effects terms with the
same grouping factor and different left-hand sides. In the
formula for an lmer model, distinct random effects terms are
modeled as being independent. Thus we specify the model
with two distinct random effects terms, each of which has
Subject as the grouping factor. The model matrix for one
term is intercept only (1) and for the other term is the column
for Days only, which can be written 0+Days. (The expression
Days generates a column for Days and an intercept. To
suppress the intercept we add 0+ to the expression; -1 also
works.)



A mixed-effects model with independent random effects

Linear mixed model fit by REML

Formula: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1754 1770 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 627.568 25.0513

Subject Days 35.858 5.9882

Residual 653.584 25.5653

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.885 36.51

Days 10.467 1.559 6.71

Correlation of Fixed Effects:

(Intr)

Days -0.184

Comparing the models

I Model fm1 contains model fm2 in the sense that if the
parameter values for model fm1 were constrained so as to
force the correlation, and hence the covariance, to be zero,
and the model were re-fit, we would get model fm2.

I The value 0, to which the correlation is constrained, is not on
the boundary of the allowable parameter values.

I In these circumstances a likelihood ratio test and a reference
distribution of a χ2 on 1 degree of freedom is suitable.

> anova(fm2, fm1)

Data: sleepstudy

Models:

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

fm1: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm2 5 1762.05 1778.01 -876.02

fm1 6 1763.99 1783.14 -875.99 0.0609 1 0.805

Conclusions from the likelihood ratio test

I Because the large p-value indicates that we would not reject
fm2 in favor of fm1, we prefer the more parsimonious fm2.

I This conclusion is consistent with the AIC (Akaike’s
Information Criterion) and the BIC (Bayesian Information
Criterion) values for which “smaller is better”.

I We can also use a Bayesian approach, where we regard the
parameters as themselves being random variables, is assessing
the values of such parameters. A currently popular Bayesian
method is to use sequential sampling from the conditional
distribution of subsets of the parameters, given the data and
the values of the other parameters. The general technique is
called Markov chain Monte Carlo sampling.

I The lme4 package has a function called mcmcsamp to evaluate
such samples from a fitted model. At present, however, there
seem to be a few “infelicities”, as Bill Venables calls them, in
this function.

Likelihood ratio tests on variance components

I As for the case of a covariance, we can fit the model with and
without the variance component and compare the fit quality.

I As mentioned previously, the likelihood ratio is a reasonable
test statistic for the comparison but the “asymptotic”
reference distribution of a χ2 does not apply because the
parameter value being tested is on the boundary.

I The p-value computed using the χ2 reference distribution
should be conservative (i.e. greater than the p-value that
would be obtained through simulation).

> fm3 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
> anova(fm3, fm2)

Data: sleepstudy

Models:

fm3: Reaction ~ Days + (1 | Subject)

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3 4 1802.10 1814.87 -897.05

fm2 5 1762.05 1778.01 -876.02 42.053 1 8.885e-11



Conditional means of the random effects
> (rr2 <- ranef(fm2))

$Subject

(Intercept) Days

308 1.5138201 9.3241219

309 -40.3749106 -8.5997562

310 -39.1816682 -5.3881596

330 24.5182906 -4.9689806

331 22.9140345 -3.1941494

332 9.2219311 -0.3085136

333 17.1560765 -0.2872253

334 -7.4515945 1.1160651

335 0.5774092 -10.9067061

337 34.7689483 8.6282046

349 -25.7541540 1.2807723

350 -13.8642119 6.7568576

351 4.9156063 -3.0753411

352 20.9294539 3.5124498

369 3.2587508 0.8731102

370 -26.4752098 4.9841221

371 0.9055257 -1.0053610

372 12.4219020 1.2584893

Scatterplot of the conditional means
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Comparing within-subject coefficients

I For this model we can combine the conditional means of the
random effects and the estimates of the fixed effects to get
conditional means of the within-subject coefficients.

I These conditional means will be “shrunken” towards the
fixed-effects estimates relative to the estimated coefficients
from each subject’s data. John Tukey called this “borrowing
strength” between subjects.

I Plotting the shrinkage of the within-subject coefficients shows
that some of the coefficients are considerably shrunken toward
the fixed-effects estimates.

I However, comparing the within-group and mixed model fitted
lines shows that large changes in coefficients occur in the
noisy data. Precisely estimated within-group coefficients are
not changed substantially.

Estimated within-group coefficients and BLUPs
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Observed and fitted
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Mixed model Within−group

Plot of prediction intervals for the random effects
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Each set of prediction intervals have constant width because of the
balance in the experiment.

Conclusions from the example

I Carefully plotting the data is enormously helpful in
formulating the model.

I It is relatively easy to fit and evaluate models to data like
these, from a balanced designed experiment.

I We consider two models with random effects for the slope and
the intercept of the response w.r.t. time by subject. The
models differ in whether the (marginal) correlation of the
vector of random effects per subject is allowed to be nonzero.

I The “estimates” (actually, the conditional means) of the
random effects can be considered as penalized estimates of
these parameters in that they are shrunk towards the origin.

I Most of the prediction intervals for the random effects overlap
zero.


