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Nonlinear mixed-effects models (NLMM)

• The LMM and GLMM are powerful data analysis tools.

• The “common denominator” of these models is the expression
for the linear predictor. The models require that the fixed
effects parameters and the random effects occur linearly in

η = Zb+Xβ = Uu+Xβ

• This is a versatile and flexible way of specifying empirical
models, whose form is determined from the data.

• In many situations, however, the form of the model is derived
from external considerations of the mechanism generating the
response. The parameters in such mechanistic models often
occur nonlinearly.

• Mechanistic models can emulate behavior like the response
approaching an asymptote, which is not possible with models
that are linear in the parameters.



The Michaelis-Menten model, SSmicmen

y = φ1x
x+φ2
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φ1 (called Vm in enzyme kinetics) is the maximum reaction
velocity, φ2 (K) is the concentration at which y = φ1/2.



The “asymptotic regression” model, SSasymp

y = φ1 + (φ1 − φ2)e−φ3x
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The logistic growth model, SSlogis

y = φ1

1+e−(x−φ2)/φ3
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Modeling repeated measures data with a nonlinear model

• Nonlinear mixed-effects models are used extensively with
longitudinal pharmacokinetic data.

• For such data the time pattern of an individual’s response is
determined by pharmacokinetic parameters (e.g. rate
constants) that occur nonlinearly in the expression for the
expected response.

• The form of the nonlinear model is determined by the
pharmacokinetic theory, not derived from the data.

d · ke · ka · C
e−ket − e−kat

ka − ke
• These pharmacokinetic parameters vary over the population.

We wish to characterize typical values in the population and
the extent of the variation.

• Thus, we associate random effects with the parameters, ka, ke
and C in the nonlinear model.



A simple example - logistic model of growth curves

• The Orange data set are measurements of the growth of a
sample of five orange trees in a location in California.

• The response is the circumference of the tree at a particular
height from the ground (often converted to “diameter at
breast height”).

• The covariates are age (days) and Tree (balanced).

• A data plot indicates that the growth patterns are similar but
the eventual heights vary.

• One possible growth model is the logistic growth model

f(t, A, t0, s) =
A

1 + e−(t−t0)/s

which can be seen to be related to the inverse logit link
function.



Orange tree growth data
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Using nlmer

• The nonlinear mixed-effects model is fit with the nlmer
function in the lme4 package.

• The formula argument for nlmer is in three parts: the
response, the nonlinear model function depending on
covariates and a set of nonlinear model (nm) parameters, and
the mixed-effects formula.

• There is no longer a concept of an intercept or a 1 term in the
mixed-effects model. All terms in the mixed-effects formula
incorporate names of nm parameters.

• The default term for the fixed-effects is a separate “intercept”
parameter for each nm parameter.

• At present, the nonlinear model must provide derivatives, in
addition to the expected response. The deriv function can
be used to create such a function from an expression.

• The starting values for the fixed effects must also be given. It
is safest to phrase these as a named vector.



Model fit for orange tree data

> print(nm1 <- nlmer(circumference ~ SSlogis(age,
+ Asym, xmid, scal) ~ Asym | Tree, Orange, start = c(Asym = 200,
+ xmid = 770, scal = 120)), corr = FALSE)

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym | Tree

Data: Orange

AIC BIC logLik deviance

1901 1908 -945.3 1891

Random effects:

Groups Name Variance Std.Dev.

Tree Asym 53985.368 232.348

Residual 52.868 7.271

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 192.04 104.09 1.845

xmid 727.89 31.97 22.771

scal 347.97 24.42 14.252



Random effects for trees
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Extending the model

• Model nm1 incorporates random effects for the asymptote
only. The asymptote parameter occurs linearly in the model
expression. When random effects are associated with only
such conditionally linear parameters, the Laplace
approximation to the deviance is exact.

• We can allow more general specifications of random effects.
In practice it is difficult to estimate many variance and
covariance parameters when the number of levels of the
grouping factor (Tree) is small.

• Frequently we begin with independent random effects to see
which parameters show substantial variability. Later we allow
covariances.

• This is not a fool-proof modeling strategy by any means but it
is somewhat reasonable.



Independent random effects for each parameter

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ (Asym | Tree) + (xmid | Tree) + (scal | Tree)

Data: Orange

AIC BIC logLik deviance

1381 1392 -683.6 1367

Random effects:

Groups Name Variance Std.Dev.

Tree Asym 34038.004 184.4939

Tree xmid 201573.105 448.9689

Tree scal 42152.970 205.3119

Residual 36.817 6.0677

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 192.77 82.69 2.331

xmid 726.14 203.17 3.574

scal 355.44 94.71 3.753



Correlated random effects for Asym and scal only

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ (Asym + scal | Tree)

Data: Orange

AIC BIC logLik deviance

1573 1584 -779.7 1559

Random effects:

Groups Name Variance Std.Dev. Corr

Tree Asym 36734.899 191.6635

scal 93569.170 305.8908 -0.680

Residual 42.887 6.5488

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 194.09 85.89 2.260

xmid 735.97 28.75 25.595

scal 365.99 138.73 2.638



Singular variance-covariance matrix
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Theophylline pharmacokinetics

Time since drug administration (hr)
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Initial fit of first-order model

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKe + lKa + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

152.1 181.0 -66.07 132.1

Random effects:

Groups Name Variance Std.Dev. Corr

Subject lKe 0.000000 0.00000

lKa 0.227357 0.47682 NaN

lCl 0.015722 0.12539 NaN -0.012

Residual 0.591717 0.76923

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.47519 0.05641 -43.88

lKa 0.47414 0.15288 3.10

lCl -3.23550 0.05235 -61.80



Remove random effect for lKe

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKa + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

146.1 166.3 -66.07 132.1

Random effects:

Groups Name Variance Std.Dev. Corr

Subject lKa 0.227362 0.47682

lCl 0.015722 0.12539 -0.012

Residual 0.591715 0.76923

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.47518 0.05641 -43.88

lKa 0.47415 0.15288 3.10

lCl -3.23552 0.05235 -61.80



Remove correlation

> print(nm6 <- nlmer(conc ~ SSfol(Dose, Time, lKe,
+ lKa, lCl) ~ (lKa | Subject) + (lCl | Subject),
+ Theoph, start = Th.start), corr = FALSE)

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKa | Subject) + (lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

144.1 161.4 -66.07 132.1

Random effects:

Groups Name Variance Std.Dev.

Subject lKa 0.227493 0.47696

Subject lCl 0.015739 0.12545

Residual 0.591690 0.76921

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.47500 0.05641 -43.88

lKa 0.47408 0.15291 3.10

lCl -3.23538 0.05236 -61.79



Random effects for clearance and absorption
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Methodology

• Evaluation of the deviance is very similar to the calculation for
the generalized linear mixed model. For given parameter
values θ and β the conditional mode ũ(θ,β) is determined by
solving a penalized nonlinear least squares problem.

• r2(θ,β) and |L|2 determine the Laplace approximation to the
deviance.

• As for GLMMs this can (and will) be extended to an adaptive
Gauss-Hermite quadrature evaluation when there is only one
grouping factor for the random effects.

• The theory (and, I hope, the implementation) for the
generalized nonlinear mixed model (GNLMM) is
straightforward, once you get to this point. Map first through
the nonlinear model function then through the inverse link
function.



From linear predictor to µ

• The main change in evaluating µY|U for NLMMs is in the role
of the linear predictor. If there are s nonlinear model (nm)
parameters and n observations in total then the model matrix
X is n · s× p and the model matrix Z is n · s× q.

• The linear predictor, v = Xβ +Uu, of length n · s, is
rearranged as an n× s matrix of parameter values Φ. The ith
component of the unbounded predictor, η, is the nonlinear
model evaluated for the i set of covariate values with the
nonlinear parameters, φ, at the ith row of Φ.

u→ b→ v →Φ→ η → µ

b =Λ(θ)u

v = Xβ +Zb =Xβ +U(θ)P Tu = vec(Φ)
η =f(t,Φ)

µ =g−1η



Generalizations of PIRLS
• The reason that the PLS problem for determining the

conditional modes is relatively easy is because the standard
least squares-based methods for fixed-effects models are easily
adapted.

• For linear mixed-models the PLS problem is solved directly. In
fact, for LMMs it is possible to determine the conditional
modes of the random effects and the conditional estimates of
the fixed effects simultaneously.

• Parameter estimates for generalized linear models (GLMs) are
(very efficiently) determined by iteratively re-weighted least
squares (IRLS) so the conditional modes in a GLMM are
determined by penalized iteratively re-weighted least squares
(PIRLS).

• Nonlinear least squares, used for fixed-effects nonlinear
regression, is adapted as penalized nonlinear least squares
(PNLS) or penalized iteratively reweighted nonlinear least
squares (PIRNLS) for generalized nonlinear mixed models.


