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Simple longitudinal data

I Repeated measures data consist of measurements of a
response (and, perhaps, some covariates) on several
experimental (or observational) units.

I Frequently the experimental (observational) unit is Subject

and we will refer to these units as “subjects”. However, the
methods described here are not restricted to data on human
subjects.

I Longitudinal data are repeated measures data in which the
observations are taken over time.

I We wish to characterize the response over time within
subjects and the variation in the time trends between subjects.

I Frequently we are not as interested in comparing the
particular subjects in the study as much as we are interested
in modeling the variability in the population from which the
subjects were chosen.

Sleep deprivation data

I This laboratory experiment measured the effect of sleep
deprivation on cognitive performance.

I There were 18 subjects, chosen from the population of
interest (long-distance truck drivers), in the 10 day trial.
These subjects were restricted to 3 hours sleep per night
during the trial.

I On each day of the trial each subject’s reaction time was
measured. The reaction time shown here is the average of
several measurements.

I These data are balanced in that each subject is measured the
same number of times and on the same occasions.



Reaction time versus days by subject
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Comments on the sleep data plot

I The plot is a “trellis” or “lattice” plot where the data for each
subject are presented in a separate panel. The axes are
consistent across panels so we may compare patterns across
subjects.

I A reference line fit by simple linear regression to the panel’s
data has been added to each panel.

I The aspect ratio of the panels has been adjusted so that a
typical reference line lies about 45◦ on the page. We have the
greatest sensitivity in checking for differences in slopes when
the lines are near ±45◦ on the page.

I The panels have been ordered not by subject number (which
is essentially a random order) but according to increasing
intercept for the simple linear regression. If the slopes and the
intercepts are highly correlated we should see a pattern across
the panels in the slopes.

Assessing the linear fits

I In most cases a simple linear regression provides an adequate
fit to the within-subject data.

I Patterns for some subjects (e.g. 350, 352 and 371) deviate
from linearity but the deviations are neither widespread nor
consistent in form.

I There is considerable variation in the intercept (estimated
reaction time without sleep deprivation) across subjects – 200
ms. up to 300 ms. – and in the slope (increase in reaction
time per day of sleep deprivation) – 0 ms./day up to 20
ms./day.

I We can examine this variation further by plotting confidence
intervals for these intercepts and slopes. Because we use a
pooled variance estimate and have balanced data, the
intervals have identical widths.

I We again order the subjects by increasing intercept so we can
check for relationships between slopes and intercepts.

95% conf int on within-subject intercept and slope
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These intervals reinforce our earlier impressions of considerable
variability between subjects in both intercept and slope but little
evidence of a relationship between intercept and slope.



A preliminary mixed-effects model

I We begin with a linear mixed model in which the fixed effects
[β1, β2]

′ are the representative intercept and slope for the
population and the random effects
bi = [bi1, bi2]

′, i = 1, . . . , 18 are the deviations in intercept and
slope associated with subject i.

I The random effects vector, b, consists of the 18 intercept
effects followed by the 18 slope effects.
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Fitting the model
> (fm1 <- lmer(Reaction ~ Days + (Days | Subject),

+ sleepstudy))

Linear mixed model fit by REML [’merMod’]

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.628

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.09 24.740

Days 35.07 5.922 0.066

Residual 654.94 25.592

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84

Days 10.467 1.546 6.77

Correlation of Fixed Effects:

(Intr)

Days -0.138

Terms and matrices

I The term Days in the formula generates a model matrix X
with two columns, the intercept column and the numeric Days

column. (The intercept is included unless suppressed.)

I The term (Days|Subject) generates a vector-valued random
effect (intercept and slope) for each of the 18 levels of the
Subject factor.

A model with uncorrelated random effects

I The data plots gave little indication of a systematic
relationship between a subject’s random effect for slope and
his/her random effect for the intercept. Also, the estimated
correlation is quite small.

I We should consider a model with uncorrelated random effects.
To express this we use two random-effects terms with the
same grouping factor and different left-hand sides. In the
formula for an lmer model, distinct random effects terms are
modeled as being independent. Thus we specify the model
with two distinct random effects terms, each of which has
Subject as the grouping factor. The model matrix for one
term is intercept only (1) and for the other term is the column
for Days only, which can be written 0+Days. (The expression
Days generates a column for Days and an intercept. To
suppress the intercept we add 0+ to the expression; -1 also
works.)



A mixed-effects model with independent random effects

Linear mixed model fit by REML [’merMod’]

Formula: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.669

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 627.57 25.051

Subject Days 35.86 5.988

Residual 653.58 25.565

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.885 36.51

Days 10.467 1.560 6.71

Correlation of Fixed Effects:

(Intr)

Days -0.184

Comparing the models

I Model fm1 contains model fm2 in the sense that if the
parameter values for model fm1 were constrained so as to
force the correlation, and hence the covariance, to be zero,
and the model were re-fit, we would get model fm2.

I The value 0, to which the correlation is constrained, is not on
the boundary of the allowable parameter values.

I In these circumstances a likelihood ratio test and a reference
distribution of a χ2 on 1 degree of freedom is suitable.

> anova(fm2, fm1)

Data: sleepstudy

Models:

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

fm1: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fm2 5 1762.0 1778.0 -876.00 1752.0

fm1 6 1763.9 1783.1 -875.97 1751.9 0.0639 1 0.8004

Conclusions from the likelihood ratio test

I Because the large p-value indicates that we would not reject
fm2 in favor of fm1, we prefer the more parsimonious fm2.

I This conclusion is consistent with the AIC (Akaike’s
Information Criterion) and the BIC (Bayesian Information
Criterion) values for which “smaller is better”.

I We can also use a Bayesian approach, where we regard the
parameters as themselves being random variables, is assessing
the values of such parameters. A currently popular Bayesian
method is to use sequential sampling from the conditional
distribution of subsets of the parameters, given the data and
the values of the other parameters. The general technique is
called Markov chain Monte Carlo sampling.

I We will expand on the use of likelihood-ratio tests in the next
section.

Conditional means of the random effects
> (rr2 <- ranef(fm2))

$Subject

(Intercept) Days

308 1.5126973 9.3234890

309 -40.3738973 -8.5991692

310 -39.1810413 -5.3877906

330 24.5189035 -4.9686455

331 22.9144326 -3.1939346

332 9.2219735 -0.3084935

333 17.1561209 -0.2872072

334 -7.4517332 1.1159900

335 0.5787240 -10.9059660

337 34.7679284 8.6276161

349 -25.7543231 1.2806876

350 -13.8650342 6.7564002

351 4.9159797 -3.0751328

352 20.9290426 3.5122097

369 3.2586474 0.8730507

370 -26.4758256 4.9837861

371 0.9056474 -1.0052929

372 12.4217574 1.2584029

attr(,"class")

[1] "ranef.mer"



Scatterplot of the conditional means
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Comparing within-subject coefficients

I For this model we can combine the conditional means of the
random effects and the estimates of the fixed effects to get
conditional means of the within-subject coefficients.

I These conditional means will be “shrunken” towards the
fixed-effects estimates relative to the estimated coefficients
from each subject’s data. John Tukey called this “borrowing
strength” between subjects.

I Plotting the shrinkage of the within-subject coefficients shows
that some of the coefficients are considerably shrunken toward
the fixed-effects estimates.

I However, comparing the within-group and mixed model fitted
lines shows that large changes in coefficients occur in the
noisy data. Precisely estimated within-group coefficients are
not changed substantially.

Estimated within-group coefficients and BLUPs
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Observed and fitted
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Plot of prediction intervals for the random effects
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Each set of prediction intervals have constant width because of the
balance in the experiment.

Conclusions from the example

I Carefully plotting the data is enormously helpful in
formulating the model.

I It is relatively easy to fit and evaluate models to data like
these, from a balanced designed experiment.

I We consider two models with random effects for the slope and
the intercept of the response w.r.t. time by subject. The
models differ in whether the (marginal) correlation of the
vector of random effects per subject is allowed to be nonzero.

I The “estimates” (actually, the conditional means) of the
random effects can be considered as penalized estimates of
these parameters in that they are shrunk towards the origin.

I Most of the prediction intervals for the random effects overlap
zero.

Random slopes and interactions

I In the sleepstudy model fits we allowed for random effects for
Days by Subject.

I These random effects can be considered as an interaction
between the fixed-effects covariate Days and the
random-effects factor Subject.

I When we have both fixed-levels categorical covariates and
random-levels categorical covariates we have many different
ways in which interactions can be expressed.

I Often the wide range of options provides “enough rope to
hang yourself” in the sense that it is very easy to create an
overly-complex model.

The Multilocation data set

I Data from a multi-location trial of several treatments are
described in section 2.8 of Littell, Milliken, Stroup and
Wolfinger (1996) SAS System for Mixed Models and are
available as Multilocation in package SASmixed.

I Littell et al. don’t cite the source of the data. Apparently Adj

is an adjusted response of some sort for 4 different treatments
applied at each of 3 blocks in each of 9 locations. Because
Block is implicitly nested in Location, the Grp interaction
variable was created.

> str(Multilocation)

’data.frame’: 108 obs. of 7 variables:

$ obs : num 3 4 6 7 9 10 12 16 19 20 ...

$ Location: Factor w/ 9 levels "A","B","C","D",..: 1 1 1 1 1 1..

$ Block : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 2 2 2 3 ..

$ Trt : Factor w/ 4 levels "1","2","3","4": 3 4 2 1 2 1 3 ..

$ Adj : num 3.16 3.12 3.16 3.25 2.71 ...

$ Fe : num 7.1 6.68 6.83 6.53 8.25 ...

$ Grp : Factor w/ 27 levels "A/1","A/2","A/3",..: 1 1 1 1 ..



Response by Grp and Trt
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I From this one plot (Littell et al. do not provide any plots but
instead immediately jump into fitting several “cookie-cutter”
models) we see that there are differences between locations,
not as much between blocks within location, and that
treatment 2 is providing a lower adjusted response.

Response by Block and Trt within Location
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Fixed-levels categorical covariates and “contrasts”

I In this experiment we are interested in comparing the
effectiveness of these four levels of Trt.

I That is, the levels of Trt are fixed levels and we should
incorporate them in the fixed-effects part of the model.

I Unlike the situation with random effects, we cannot separately
estimate “effects” for each level of a categorical covariate in
the fixed-effects and an overall intercept term.

I We could suppress the intercept term but even then we still
encounter redundancies in effects for each level when we have
more than one categorical covariate in the fixed-effects.

I Because of this we estimate coefficients for k − 1 “contrasts”
associated with the k levels of a factor.

I The default contrasts (called contr.treatment) measure
changes relative to a reference level which is the first level of
the factor. Other contrasts can be used when particular
comparisons are of interest.

A simple model for Trt controlling for Grp

> print(fm3 <- lmer(Adj ~ Trt + (1 | Grp), Multilocation),

+ corr = FALSE)

Linear mixed model fit by REML [’merMod’]

Formula: Adj ~ Trt + (1 | Grp)

Data: Multilocation

REML criterion at convergence: 31.5057

Random effects:

Groups Name Variance Std.Dev.

Grp (Intercept) 0.11092 0.3331

Residual 0.03672 0.1916

Number of obs: 108, groups: Grp, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.92401 0.07395 39.54

Trt2 -0.24637 0.05215 -4.72

Trt3 0.02544 0.05215 0.49

Trt4 -0.05834 0.05215 -1.12



Interpretation of the results

I We see that the variability between the Location/Block
combinations (levels of Grp) is greater than the residual
variability, indicating the importance of controlling for it.

I The contrast between levels 2 and 1 of Trt, labeled Trt2 is
the greatest difference and apparently significant.

I If we wish to evaluate the “significance” of the levels of Trt
as a group, however, we should fit the trivial model and
perform a LRT.

> fm4 <- lmer(Adj ~ 1 + (1 | Grp), Multilocation)

> anova(fm4, fm3)

Data: Multilocation

Models:

fm4: Adj ~ 1 + (1 | Grp)

fm3: Adj ~ Trt + (1 | Grp)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fm4 3 49.731 57.777 -21.8654 43.731

fm3 6 26.951 43.044 -7.4756 14.951 28.78 3 2.491e-06

Location as a fixed-effect

I We have seen that Location has a substantial effect on Adj.
If we are interested in these specific 9 locations we could
incorporate them as fixed-effects parameters.

I Instead of examining 8 coefficients separately we will consider
their cumulative effect using the single-argument form of
anova.

> anova(fm5 <- lmer(Adj ~ Location + Trt + (1 | Grp),

+ Multilocation))

Analysis of Variance Table

Df Sum Sq Mean Sq F value

Location 8 7.3768 0.92210 25.115

Trt 3 1.2217 0.40725 11.092

An interaction between fixed-effects factors

I We could ask if there is an interaction between the levels of
Trt and those of Location considered as fixed effects.

> anova(fm6 <- lmer(Adj ~ Location * Trt + (1 | Grp),

+ Multilocation))

Analysis of Variance Table

Df Sum Sq Mean Sq F value

Location 8 6.9475 0.86843 25.1147

Trt 3 1.2217 0.40725 11.7774

Location:Trt 24 0.9966 0.04152 1.2008

> anova(fm5, fm6)

Data: Multilocation

Models:

fm5: Adj ~ Location + Trt + (1 | Grp)

fm6: Adj ~ Location * Trt + (1 | Grp)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fm5 14 -24.504 13.046 26.252 -52.504

fm6 38 -11.146 90.775 43.573 -87.146 34.642 24 0.07388

Considering levels of Location as random effects

> print(fm7 <- lmer(Adj ~ Trt + (1 | Location) + (1 |

+ Grp), Multilocation), corr = FALSE)

Linear mixed model fit by REML [’merMod’]

Formula: Adj ~ Trt + (1 | Location) + (1 | Grp)

Data: Multilocation

REML criterion at convergence: 1.8978

Random effects:

Groups Name Variance Std.Dev.

Grp (Intercept) 0.005085 0.07131

Location (Intercept) 0.114657 0.33861

Residual 0.036715 0.19161

Number of obs: 108, groups: Grp, 27; Location, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.92401 0.11953 24.462

Trt2 -0.24637 0.05215 -4.724

Trt3 0.02544 0.05215 0.488

Trt4 -0.05834 0.05215 -1.119



Is Grp needed in addition to Location?

I At this point we may want to check whether the random
effect for Block within Location is needed in addition to the
random effect for Location.

> fm8 <- lmer(Adj ~ Trt + (1 | Location), Multilocation)

> anova(fm8, fm7)

Data: Multilocation

Models:

fm8: Adj ~ Trt + (1 | Location)

fm7: Adj ~ Trt + (1 | Location) + (1 | Grp)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fm8 6 0.25442 16.347 5.8728 -11.746

fm7 7 0.39496 19.170 6.8025 -13.605 1.8595 1 0.1727

I Apparently not, but we may want to revisit this issue after
checking for interactions.

Ways of modeling random/fixed interactions

I There are two ways we can model the interaction between a
fixed-levels factor (Trt) and a random-levels factor (Location,
as we are currently viewing this factor).

I The first, and generally preferable, way is to incorporate a
simple scalar random-effects term with the interaction as the
grouping factor.

I The second, more complex, way is to use vector-valued
random effects for the random-levels factor. We must be
careful when using this approach because it often produces a
degenerate model, but not always obviously degenerate.

Scalar random effects for interaction
> (fm9 <- lmer(Adj ~ Trt + (1 | Trt:Location) + (1 |

+ Location), Multilocation, REML = FALSE))

Linear mixed model fit by maximum likelihood [’merMod’]

Formula: Adj ~ Trt + (1 | Trt:Location) + (1 | Location)

Data: Multilocation

AIC BIC logLik deviance

2.2544 21.0293 5.8728 -11.7456

Random effects:

Groups Name Variance Std.Dev.

Trt:Location (Intercept) 0.0000 0.0000

Location (Intercept) 0.1029 0.3207

Residual 0.0393 0.1982

Number of obs: 108, groups: Trt:Location, 36; Location, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.92401 0.11351 25.759

Trt2 -0.24637 0.05396 -4.566

Trt3 0.02544 0.05396 0.472

Trt4 -0.05834 0.05396 -1.081

Correlation of Fixed Effects:

(Intr) Trt2 Trt3

Trt2 -0.238

Trt3 -0.238 0.500

Trt4 -0.238 0.500 0.500

Both interaction and Block-level random effects
> (fm10 <- update(fm9, . ~ . + (1 | Grp)))

Linear mixed model fit by maximum likelihood [’merMod’]

Formula: Adj ~ Trt + (1 | Trt:Location) + (1 | Location) + (1 | Grp)

Data: Multilocation

AIC BIC logLik deviance

2.3564 23.8134 6.8218 -13.6436

Random effects:

Groups Name Variance Std.Dev.

Trt:Location (Intercept) 0.0007769 0.02787

Grp (Intercept) 0.0056193 0.07496

Location (Intercept) 0.1011949 0.31811

Residual 0.0345787 0.18595

Number of obs: 108, groups: Trt:Location, 36; Grp, 27; Location, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.92401 0.11322 25.826

Trt2 -0.24637 0.05229 -4.712

Trt3 0.02544 0.05229 0.487

Trt4 -0.05834 0.05229 -1.116

Correlation of Fixed Effects:

(Intr) Trt2 Trt3

Trt2 -0.231

Trt3 -0.231 0.500

Trt4 -0.231 0.500 0.500



Scalar interaction random effects are still not significant

> anova(fm10, fm8)

Data: Multilocation

Models:

fm8: Adj ~ Trt + (1 | Location)

fm10: Adj ~ Trt + (1 | Trt:Location) + (1 | Location) + (1 | Grp)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fm8 6 0.25442 16.347 5.8728 -11.746

fm10 8 2.35640 23.813 6.8218 -13.644 1.898 2 0.3871

I We have switched to ML fits because we are comparing
models using anova. In a comparative anova any REML fits
are refit as ML before comparison so we start with the ML fits.

I In model fm9 the estimated variance for the scalar interaction
random effects was exactly zero in the ML fit. In fm10 the
estimate is positive but still not significant.

Vector-valued random effects

I An alternative formulation for an interaction between Trt and
Location (viewed as a random-levels factor) is to use
vector-valued random effects.

I We have used a similar construct in model fm1 with
vector-valued random effects (intercept and slope) for each
level of Subject.

I One way to fit such a model is
> fm11 <- lmer(Adj ~ Trt + (Trt | Location) + (1 |

+ Grp), Multilocation, REML = FALSE)
but interpretation is easier when fit as
> fm11 <- lmer(Adj ~ Trt + (0 + Trt | Location) + (1 |

+ Grp), Multilocation, REML = FALSE)

Examining correlation of random effects

I The random effects summary for fm11
AIC BIC logLik deviance

15.8244 58.7385 8.0878 -16.1756

Random effects:

Groups Name Variance Std.Dev. Corr

Grp (Intercept) 0.006352 0.0797

Location Trt1 0.119330 0.3454

Trt2 0.093347 0.3055 0.984

Trt3 0.104075 0.3226 0.994 0.996

Trt4 0.099934 0.3161 0.921 0.967 0.941

Residual 0.031647 0.1779

Number of obs: 108, groups: Grp, 27; Location, 9

shows very high correlations between the random effects for
the levels of Trt within each level of Location.

I Such a situation may pass by unnoticed if estimates of
variances and covariances are all that is reported.

I In this case (and many other similar cases) the
variance-covariance matrix of the vector-valued random effects
is effectively singular.

Singular variance-covariance for random effects

I When we incorporate too many fixed-effects terms in a model
we usually find out because the standard errors become very
large.

I For random effects terms, especially those that are
vector-valued, overparameterization is sometimes more
difficult to detect.

I The REML and ML criteria for mixed-effects models seek to
balance the complexity of the model versus the fidelity of the
fitted values to the observed responses.

I The way “complexity” is measured in this case, a model with
a singular variance-covariance matrix for the random effects is
considered a good thing - it is optimally simple.

I When we have only scalar random-effects terms singularity
means that one of the variance components must be exactly
zero (and “near singularity” means very close to zero).



Detecting singular random effects

I The Lambda slot in a merMod object is the triangular factor of
the variance-covariance matrix.

I We can directly assess its condition number using the kappa

(condition number) or rcond (reciprocal condition number)
functions. Large condition numbers are bad.

I We do need to be cautious when we have a large number of
levels for the grouping factors because Lambda will be very
large (but also very sparse). At present the kappa and rcond

functions transform the sparse matrix to a dense matrix,
which could take a very long time.

> kappa(fm11@re@Lambda)

[1] 157833934

> rcond(fm11@re@Lambda)

[1] 4.409462e-09

Using verbose model fits

I An alternative, which is recommended whenever you have
doubts about a model fit, is to use verbose=TRUE (the lines
don’t wrap and we miss the interesting part here).

npt = 17 , n = 11

rhobeg = 0.2 , rhoend = 2e-07

0.020: 41: -9.00509;0.533967 1.75302 0.993757 1.29209 1.11595 1.12977 0.766385 0.701513 0.0524916 0.881235 0.512218

0.0020: 122: -16.1144;0.443185 1.91331 1.66795 1.78233 1.60988 0.270168 0.147923 0.616836 0.00000 0.337169 0.0511185

0.00020: 234: -16.1600;0.444143 1.93410 1.69020 1.80295 1.63116 0.257158 0.110925 0.686563 0.00000 0.0113427 0.00203166

2.0e-05: 482: -16.1756;0.447997 1.94216 1.69082 1.80318 1.63629 0.303163 0.178898 0.612994 0.0796712 -0.324746 0.00000

2.0e-06: 530: -16.1756;0.447999 1.94183 1.69048 1.80285 1.63603 0.303270 0.179075 0.612893 0.0797265 -0.325003 0.00000

2.0e-07: 570: -16.1756;0.447998 1.94182 1.69047 1.80284 1.63601 0.303264 0.179065 0.612884 0.0797219 -0.324992 5.10160e-06

At return

616: -16.175574: 0.447997 1.94182 1.69047 1.80284 1.63601 0.303262 0.179063 0.612886 0.0797212 -0.324988 1.38065e-07
> fm11@re@theta

[1] 4.479973e-01 1.941823e+00 1.690472e+00 1.802841e+00

[5] 1.636013e+00 3.032622e-01 1.790633e-01 6.128860e-01

[9] 7.972120e-02 -3.249879e-01 1.380652e-07

What to watch for in the verbose output

I In this model the criterion is being optimized with respect to
11 parameters.

I These are the variance component parameters, θ. The
fixed-effects coefficients, β, and the common scale parameter,
σ, are at their conditionally optimal values.

I Generally it is more difficult to estimate a variance parameter
(either a variance or a covariance) than it is to estimate a
coefficient. Estimating 11 such parameters requires a
considerable amount of information.

I Some of these parameters are required to be non-negative.
When they become zero or close to zero (2.7× 10−7, in this
case) the variance-covariance matrix is degenerate.

I The @re@lower slot contains the lower bounds. Parameter
components for which @re@lower is -Inf are unbounded. The
ones to check are those for which @re@lower is 0.

Another example of singular variance-covariance

I The Early data in the mlmRev package are from a study on
early childhood cognitive development as influenced by a
treatment. These data are discussed in Applied Longitudinal
Data Analysis (2003) by Singer and Willett.

I A model with random effects for slope and intercept is

> Early <- within(Early, tos <- age - 0.5)

> fm12 <- lmer(cog ~ tos + trt:tos + (tos | id), Early,

+ verbose = TRUE)

npt = 7 , n = 3

rhobeg = 0.2 , rhoend = 2e-07

0.020: 11: 2368.50; 1.09296 -0.173139 0.0953204

0.0020: 30: 2364.50; 1.48770 -0.374305 0.0138819

0.00020: 42: 2364.50; 1.48462 -0.372458 0.00762182

2.0e-05: 58: 2364.50; 1.48417 -0.372319 0.00114304

2.0e-06: 74: 2364.50; 1.48420 -0.372480 0.00000

2.0e-07: 80: 2364.50; 1.48420 -0.372481 0.00000

At return

84: 2364.5016: 1.48420 -0.372481 0.00000



Fitted model for the Early data

Linear mixed model fit by REML [’merMod’]

Formula: cog ~ tos + trt:tos + (tos | id)

Data: Early

REML criterion at convergence: 2364.502

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 166.40 12.900

tos 10.48 3.237 -1.000

Residual 75.54 8.691

Number of obs: 309, groups: id, 103

Fixed effects:

Estimate Std. Error t value

(Intercept) 120.783 1.824 66.22

tos -22.470 1.494 -15.04

tos:trtY 7.646 1.447 5.28
Here is it obvious that there is a problem. However, Singer and
Willett did not detect this in model fits from SAS PROC MIXED
or MLWin, which reported a covariance estimate.

Other practical issues

I In some disciplines there is an expectation that data will be
analyzed starting with the most complex model and
evaluating terms according to their p-values.

I This can be appropriate for carefully balanced, designed
experiments. It is rarely a good approach on observational,
imbalanced data.

I Bear in mind that this approach was formulated when
graphical and computational capabilities were very limited.

I A more appropriate modern approach is to explore the data
graphically and to fit models sequentially, comparing these
fitted models with tests such as the LRT.

Fixed-effects or random-effects?

I Earlier we described the distinction between fixed and random
effects as dependent on the repeatability of the levels.

I This is the basis for the distinction but the number of levels
observed must also be considered.

I Fitting mixed-effects models requires data from several levels
of the grouping factor. Even when a factor represents a
random selection (say sample transects in an ecological study)
it is not practical to estimate a variance component from only
two or three observed levels.

I At the other extreme, a census of a large number of levels can
be modeled with random effects even though the observed
levels are not a sample.


