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Generalized Linear Mixed Models

I When using linear mixed models (LMMs) we assume that the
response being modeled is on a continuous scale.

I Sometimes we can bend this assumption a bit if the response
is an ordinal response with a moderate to large number of
levels. For example, the Scottish secondary school test results
in the mlmRev package are integer values on the scale of 1 to
10 but we analyze them on a continuous scale.

I However, an LMM is not suitable for modeling a binary
response, an ordinal response with few levels or a response
that represents a count. For these we use generalized linear
mixed models (GLMMs).

I To describe GLMMs we return to the representation of the
response as an n-dimensional, vector-valued, random variable,
Y , and the random effects as a q-dimensional, vector-valued,
random variable, B.

Parts of LMMs carried over to GLMMs

I Random variables
Y the response variable
B the (possibly correlated) random effects
U the orthogonal random effects

I Parameters
β - fixed-effects coefficients
σ - the common scale parameter (not always used)
θ - parameters that determine Var(B) = σ2ΛΛ′

I Some matrices
X the n× p model matrix for β
Z the n× q model matrix for b
P fill-reducing q × q permutation (from Z)
Λ(θ) relative covariance factor, s.t. Var(B) = σ2ΛΛ′

U(θ) = ZΛ(θ)



The conditional distribution, Y |U
I For GLMMs, the marginal distribution, B ∼ N (0,Σ(θ)) is

the same as in LMMs except that σ2 is omitted. We define
U ∼ N (0, Iq) such that B = Λ(θ)U .

I For GLMMs we retain some of the properties of the
conditional distribution

(Y |U = u) ∼ N
(
µY|U , σ

2I
)

where µY|U (u) =Xβ +ZΛu

Specifically
I The distribution Y |U = u depends on u only through the

conditional mean, µY|U (u).
I Elements of Y are conditionally independent. That is, the

distribution of Y |U = u is completely specified by the
univariate, conditional distributions, Yi|U , i = 1, . . . , n.

I These univariate, conditional distributions all have the same
form. They differ only in their means.

I GLMMs differ from LMMs in the form of the univariate,
conditional distributions and in how µY|U (u) depends on u.

Some choices of univariate conditional distributions

I Typical choices of univariate conditional distributions are:
I The Bernoulli distribution for binary (0/1) data, which has

probability mass function

p(y|µ) = µy(1− µ)1−y, 0 < µ < 1, y = 0, 1

I Several independent binary responses can be represented as a
binomial response, but only if all the Bernoulli distributions
have the same mean.

I The Poisson distribution for count (0, 1, . . . ) data, which has
probability mass function

p(y|µ) = e−µ
µy

y!
, 0 < µ, y = 0, 1, 2, . . .

I All of these distributions are completely specified by the
conditional mean. This is different from the conditional
normal (or Gaussian) distribution, which also requires the
common scale parameter, σ.

The link function, g

I When the univariate conditional distributions have constraints
on µ, such as 0 < µ < 1 (Bernoulli) or 0 < µ (Poisson), we
cannot define the conditional mean, µY|U , to be equal to the
linear predictor, Xβ +U(θ)u, which is unbounded.

I We choose an invertible, univariate link function, g, such that
η = g(µ) is unconstrained. The vector-valued link function, g,
is defined by applying g component-wise.

η = g(µ) where ηi = g(µi), i = 1, . . . , n

I We require that g be invertible so that µ = g−1(η) is defined
for −∞ < η <∞ and is in the appropriate range (0 < µ < 1
for the Bernoulli or 0 < µ for the Poisson). The vector-valued
inverse link, g−1, is defined component-wise.

“Canonical” link functions

I There are many choices of invertible scalar link functions, g,
that we could use for a given set of constraints.

I For the Bernoulli and Poisson distributions, however, one link
function arises naturally from the definition of the probability
mass function. (The same is true for a few other, related but
less frequently used, distributions, such as the gamma
distribution.)

I To derive the canonical link, we consider the logarithm of the
probability mass function (or, for continuous distributions, the
probability density function).

I For distributions in this “exponential” family, the logarithm of
the probability mass or density can be written as a sum of
terms, some of which depend on the response, y, only and
some of which depend on the mean, µ, only. However, only
one term depends on both y and µ, and this term has the
form y · g(µ), where g is the canonical link.



The canonical link for the Bernoulli distribution

I The logarithm of the probability mass function is

log(p(y|µ)) = log(1−µ)+y log
(

µ

1− µ

)
, 0 < µ < 1, y = 0, 1.

I Thus, the canonical link function is the logit link

η = g(µ) = log

(
µ

1− µ

)
.

I Because µ = P [Y = 1], the quantity µ/(1− µ) is the odds
ratio (in the range (0,∞)) and g is the logarithm of the odds
ratio, sometimes called “log odds”.

I The inverse link is

µ = g−1(η) =
eη

1 + eη
=

1

1 + e−η

Plot of canonical link for the Bernoulli distribution
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The canonical link for the Poisson distribution

I The logarithm of the probability mass is

log(p(y|µ)) = log(y!)− µ+ y log(µ)

I Thus, the canonical link function for the Poisson is the log link

η = g(µ) = log(µ)

I The inverse link is

µ = g−1(η) = eη



The canonical link related to the variance

I For the canonical link function, the derivative of its inverse is
the variance of the response.

I For the Bernoulli, the canonical link is the logit and the
inverse link is µ = g−1(η) = 1/(1 + e−η). Then

dµ

dη
=

e−η

(1 + e−η)2
=

1

1 + e−η
e−η

1 + e−η
= µ(1− µ) = Var(Y)

I For the Poisson, the canonical link is the log and the inverse
link is µ = g−1(η) = eη. Then

dµ

dη
= eη = µ = Var(Y)

The unscaled conditional density of U |Y = y

I As in LMMs we evaluate the likelihood of the parameters,
given the data, as

L(θ,β|y) =
∫

Rq

[Y |U ](y|u) [U ](u) du,

I The product [Y |U ](y|u)[U ](u) is the unscaled (or
unnormalized) density of the conditional distribution U |Y .

I The density [U ](u) is a spherical Gaussian density
1

(2π)q/2
e−‖u‖

2/2.

I The expression [Y |U ](y|u) is the value of a probability mass
function or a probability density function, depending on
whether Yi|U is discrete or continuous.

I The linear predictor is g(µY|U ) = η =Xβ +U(θ)u.
Alternatively, we can write the conditional mean of Y , given
U , as

µY|U (u) = g
−1 (Xβ +U(θ)u)

The conditional mode of U |Y = y

I In general the likelihood, L(θ,β|y) does not have a closed
form. To approximate this value, we first determine the
conditional mode

ũ(y|θ,β) = argmax
u

[Y |U ](y|u) [U ](u)

using a quadratic approximation to the logarithm of the
unscaled conditional density.

I This optimization problem is (relatively) easy because the
quadratic approximation to the logarithm of the unscaled
conditional density can be written as a penalized, weighted
residual sum of squares,

ũ(y|θ,β) = argmin
u

∥∥∥∥
[
W 1/2(µ)

(
y − µY|U (u)

)

−u

]∥∥∥∥
2

where W (µ) is the diagonal weights matrix. The weights are
the inverses of the variances of the Yi.

The PIRLS algorithm

I Parameter estimates for generalized linear models (without
random effects) are usually determined by iteratively
reweighted least squares (IRLS), an incredibly efficient
algorithm. PIRLS is the penalized version. It is iteratively
reweighted in the sense that parameter estimates are
determined for a fixed weights matrix W then the weights are
updated to the current estimates and the process repeated.

I For fixed weights we solve

min
u

∥∥∥∥
[
W 1/2

(
y − µY|U (u)

)

−u

]∥∥∥∥
2

as a nonlinear least squares problem with update, δu, given by

P
(
UMWMU ′ + I

)
P ′δu = UMW (y − µ)− u

where M = dµ/dη is the (diagonal) Jacobian matrix. Recall
that for the canonical link, M = Var(Y |U) =W−1.



The Laplace approximation to the deviance

I At convergence, the sparse Cholesky factor, L, used to
evaluate the update is

LL′ = P
(
UMWMU ′ + I

)
P ′

or
LL′ = P

(
UMU ′ + I

)
P ′

if we are using the canonical link.

I The integrand of the likelihood is approximately a constant
times the density of the N (ũ,LL′) distribution.

I On the deviance scale (negative twice the log-likelihood) this
corresponds to

d(β,θ|y) = dg(y,µ(ũ)) + ‖ũ‖2 + log(|L|2)

where dg(y,µ(ũ)) is the GLM deviance for y and µ.

Modifications to the algorithm

I Notice that this deviance depends on the fixed-effects
parameters, β, as well as the variance-component parameters,
θ. This is because log(|L|2) depends on µY|U and, hence, on
β. For LMMs log(|L|2) depends only on θ.

I It is likely that modifying the PIRLS algorithm to optimize
simultaneously on u and β would result in a value that is very
close to the deviance profiled over β.

I Another approach, which is being implemented as a Google
Summer of Code project, is adaptive Gauss-Hermite
quadrature (AGQ). This has a similar structure to the Laplace
approximation but is based on more evaluations of the
unscaled conditional density near the conditional modes. It is
only appropriate for models in which the random effects are
associated with only one grouping factor

Contraception data

I One of the data sets in the "mlmRev" package, derived from
data files available on the multilevel modelling web site, is
from a fertility survey of women in Bangladesh.

I One of the responses is whether or not the woman currently
uses artificial contraception (i.e. a binary response)

I Covariates included the woman’s age (on a centered scale),
the number of live children she had, whether she lived in an
urban or rural setting, and the district in which she lived.

I Instead of plotting such data as points, we use the 0/1
response to generate scatterplot smoother curves versus age
for the different groups.

Contraception use versus age by urban and livch
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Comments on the data plot

I These observational data are unbalanced (some districts have
only 2 observations, some have nearly 120). They are not
longitudinal (no “time” variable).

I Binary responses have low per-observation information
content (exactly one bit per observation). Districts with few
observations will not contribute strongly to estimates of
random effects.

I Within-district plots will be too imprecise so we only examine
the global effects in plots.

I The comparisons on the multilevel modelling site are for fits of
a model that is linear in age, which is clearly inappropriate.

I The form of the curves suggests at least a quadratic in age.

I The urban versus rural differences may be additive.

I It appears that the livch factor could be dichotomized into
“0” versus “1 or more”.

Preliminary model using Laplacian approximation

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age + I(age^2) + urban + livch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2388.774 2433.313 -1186.387 2372.774

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2253 0.4747

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.019342 0.174010 -5.858

age 0.003516 0.009212 0.382

I(age^2) -0.004487 0.000723 -6.205

urbanY 0.684625 0.119691 5.720

livch1 0.801901 0.161899 4.953

livch2 0.901037 0.184801 4.876

livch3+ 0.899413 0.185435 4.850

Comments on the model fit

I This model was fit using the Laplacian approximation to the
deviance.

I There is a highly significant quadratic term in age.

I The linear term in age is not significant but we retain it
because the age scale has been centered at an arbitrary (and
unknown) value.

I The urban factor is highly significant (as indicated by the
plot).

I Levels of livch greater than 0 are significantly different from
0 but may not be different from each other.

Reduced model with dichotomized livch

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age + I(age^2) + urban + ch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2385.231 2418.635 -1186.615 2373.231

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2242 0.4734

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -0.9913326 0.1675636 -5.916

age 0.0061720 0.0078273 0.789

I(age^2) -0.0045584 0.0007142 -6.382

urbanY 0.6804429 0.1194818 5.695

chY 0.8462275 0.1470584 5.754



Comparing the model fits

I A likelihood ratio test can be used to compare these nested
models.

> anova(cm2, cm1)

Data: Contraception

Models:

cm2: use ~ age + I(age^2) + urban + ch + (1 | district)

cm1: use ~ age + I(age^2) + urban + livch + (1 | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm2 6 2385.2 2418.6 -1186.6 2373.2

cm1 8 2388.8 2433.3 -1186.4 2372.8 0.4567 2 0.7958

I The large p-value indicates that we would not reject cm2 in
favor of cm1 hence we prefer the more parsimonious cm2.

I The plot of the scatterplot smoothers according to live
children or none indicates that there may be a difference in
the age pattern between these two groups.

Contraception use versus age by urban and ch
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Allowing age pattern to vary with ch

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2379.227 2418.198 -1182.613 2365.227

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2225 0.4717

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.304583 0.213473 -6.111

age -0.046526 0.021701 -2.144

chY 1.190985 0.205945 5.783

I(age^2) -0.005660 0.000833 -6.795

urbanY 0.700970 0.120055 5.839

age:chY 0.067224 0.025293 2.658

Prediction intervals on the random effects
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Extending the random effects

I We may want to consider allowing a random effect for
urban/rural by district. This is complicated by the fact the
many districts only have rural women in the study

district

urban 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 54 20 0 19 37 58 18 35 20 13 21 23 16 17 14 18

Y 63 0 2 11 2 7 0 2 3 0 0 6 8 101 8 2

district

urban 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N 24 33 22 15 10 20 15 14 49 13 39 45 25 45 27 24

Including a random effect for urban by district
Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (urban | district)

Data: Contraception

AIC BIC logLik deviance

2371.636 2421.742 -1176.818 2353.636

Random effects:

Groups Name Variance Std.Dev. Corr

district (Intercept) 0.3773 0.6142

urbanY 0.5271 0.7260 -0.794

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.308648 0.221298 -5.914

age -0.045071 0.021729 -2.074

chY 1.182726 0.206610 5.724

I(age^2) -0.005509 0.000839 -6.567

urbanY 0.766746 0.159864 4.796

age:chY 0.064845 0.025348 2.558

Correlation of Fixed Effects:

(Intr) age chY I(g^2) urbanY

age 0.694

chY -0.853 -0.790

I(age^2) -0.096 0.298 -0.093

urbanY -0.371 -0.061 0.087 -0.017

age:chY -0.572 -0.929 0.673 -0.496 0.054

Significance of the additional random effect

> anova(cm4, cm3)

Data: Contraception

Models:

cm3: use ~ age * ch + I(age^2) + urban + (1 | district)

cm4: use ~ age * ch + I(age^2) + urban + (urban | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm3 7 2379.2 2418.2 -1182.6 2365.2

cm4 9 2371.6 2421.7 -1176.8 2353.6 11.591 2 0.003042

I The additional random effect is highly significant in this test.

I Most of the prediction intervals still overlap zero.

I A scatterplot of the random effects shows several random
effects vectors falling along a straight line. These are the
districts with all rural women or all urban women.

Prediction intervals for the bivariate random effects
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Scatter plot of the BLUPs
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Nested simple, scalar random effects versus vector-valued
Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | urban:district) + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2371.675 2416.214 -1177.838 2355.675

Random effects:

Groups Name Variance Std.Dev.

urban:district (Intercept) 0.3086025 0.55552

district (Intercept) 0.0006808 0.02609

Number of obs: 1934, groups: urban:district, 102; district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.3042507 0.2188531 -5.959

age -0.0448232 0.0217800 -2.058

chY 1.1810768 0.2070578 5.704

I(age^2) -0.0054804 0.0008384 -6.537

urbanY 0.7613873 0.1683946 4.521

age:chY 0.0646389 0.0253854 2.546

Correlation of Fixed Effects:

(Intr) age chY I(g^2) urbanY

age 0.704

chY -0.866 -0.791

I(age^2) -0.098 0.297 -0.092

urbanY -0.332 -0.057 0.082 -0.014

age:chY -0.580 -0.929 0.674 -0.495 0.049

Using the interaction term only
Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | urban:district)

Data: Contraception

AIC BIC logLik deviance

2368.542 2407.514 -1177.271 2354.542

Random effects:

Groups Name Variance Std.Dev.

urban:district (Intercept) 0.3218 0.5672

Number of obs: 1934, groups: urban:district, 102

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.3094337 0.2196438 -5.962

age -0.0448438 0.0218185 -2.055

chY 1.1814379 0.2073624 5.697

I(age^2) -0.0055277 0.0008409 -6.574

urbanY 0.7643086 0.1702630 4.489

age:chY 0.0646063 0.0254321 2.540

Correlation of Fixed Effects:

(Intr) age chY I(g^2) urbanY

age 0.703

chY -0.864 -0.791

I(age^2) -0.097 0.297 -0.092

urbanY -0.334 -0.057 0.081 -0.014

age:chY -0.579 -0.929 0.674 -0.495 0.049

Comparing models with random effects for interactions

> anova(cm6, cm5, cm4)

Data: Contraception

Models:

cm6: use ~ age * ch + I(age^2) + urban + (1 | urban:district)

cm5: use ~ age * ch + I(age^2) + urban + (1 | urban:district) + (1 |

cm5: district)

cm4: use ~ age * ch + I(age^2) + urban + (urban | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm6 7 2368.5 2407.5 -1177.3 2354.5

cm5 8 2371.7 2416.2 -1177.8 2355.7 0.0000 1 1.0000

cm4 9 2371.6 2421.7 -1176.8 2353.6 2.0393 1 0.1533

I The random effects seem to best be represented by a separate
random effect for urban and for rural women in each district.

I The districts with only urban women in the survey or with
only rural women in the survey are naturally represented in
this model.



Conclusions from the example

I Again, carefully plotting the data is enormously helpful in
formulating the model.

I Observational data tend to be unbalanced and have many
more covariates than data from a designed experiment.
Formulating a model is typically more difficult than in a
designed experiment.

I A generalized linear model is fit by adding a value, typically
binomial or poisson, for the optional argument family in the
call to lmer.

I MCMC sampling is not provided for GLMMs at present but
will be added.

I We use likelihood-ratio tests and z-tests in the model building.


