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Definition of linear mixed models

As previously stated, we define a linear mixed model in terms of two
random variables: the n-dimensional Y and the q-dimensional B
The probability model specifies the conditional distribution

(Y |B = b) ∼ N
(
Zb +Xβ, σ2I n

)
and the unconditional distribution

B ∼ N (0,Σθ) .

These distributions depend on the parameters β, θ and σ.

The probability model defines the likelihood of the parameters, given
the observed data, y . In theory all we need to know is how to define
the likelihood from the data so that we can maximize the likelihood
with respect to the parameters. In practice we want to be able to
evaluate it quickly and accurately.
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Properties of Σθ; generating it

Because it is a variance-covariance matrix, the q × q Σθ must be
symmetric and positive semi-definite, which means, in effect, that it
has a “square root” — there must be another matrix that, when
multiplied by its transpose, gives Σθ.

We never really form Σ; we always work with the relative covariance
factor, Λθ, defined so that

Σθ = σ2ΛθΛ
T
θ

where σ2 is the same variance parameter as in (Y |B = b).

We also work with a q-dimensional “spherical” or “unit” random-effects
vector, U , such that

U ∼ N
(
0, σ2I q

)
, B = ΛθU ⇒ Var(B) = σ2ΛΛT = Σ.

The linear predictor expression becomes

Zb +Xβ = ZΛθu +Xβ
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The conditional mean µU |Y

Although the probability model is defined from (Y |U = u), we
observe y , not u (or b) so we want to work with the other
conditional distribution, (U |Y = y).

The joint distribution of Y and U is Gaussian with density

fY,U (y ,u) = fY|U (y |u) fU (u)

=
exp(− 1

2σ2 ‖y −Xβ − ZΛθu‖2)
(2πσ2)n/2

exp(− 1
2σ2 ‖u‖2)

(2πσ2)q/2

=
exp(−

[
‖y −Xβ − ZΛθu‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2

(U |Y = y) is also Gaussian so its mean is its mode. I.e.

µU |Y = argmin
u

[
‖y −Xβ − ZΛθu‖2 + ‖u‖2

]
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Minimizing a penalized sum of squared residuals

An expression like ‖y −Xβ − ZΛθu‖2 + ‖u‖2 is called a penalized
sum of squared residuals because ‖y −Xβ − ZΛθu‖2 is a sum of
squared residuals and ‖u‖2 is a penalty on the size of the vector u .

Determining µU |Y as the minimizer of this expression is a penalized
least squares (PLS) problem. In this case it is a penalized linear least
squares problem that we can solve directly (i.e. without iterating).

One way to determine the solution is to rephrase it as a linear least
squares problem for an extended residual vector

µU |Y = argmin
u

∥∥∥∥[y −Xβ
0

]
−
[
ZΛθ

I q

]
u

∥∥∥∥2
This is sometimes called a pseudo-data approach because we create
the effect of the penalty term, ‖u‖2, by adding “pseudo-observations”
to y and to the predictor.
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Solving the linear PLS problem

The conditional mean satisfies the equations(
ZΛθΛ

T
θ Z

T + I q

)
µU |Y = ΛT

θ Z
T(y −Xβ).

This would be interesting but not very important were it not for the
fact that we actually can solve that system for µU |Y even when its
dimension, q , is very, very large.

Because Z is generated from indicator columns for the grouping
factors, it is sparse. ZΛθ is also very sparse.

There are sophisticated and efficient ways of calculating a sparse
Cholesky factor, which is a sparse, lower-triangular matrix Lθ that
satisfies

LθL
T
θ = ΛT

θ Z
TZΛθ + I q

and, from that, solving for µU |Y .
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The sparse Choleksy factor, Lθ

Because the ability to evaluate the sparse Cholesky factor, Lθ, is the
key to the computational methods in the lme4 package, we consider
this in detail.

In practice we will evaluate Lθ for many different values of θ when
determining the ML or REML estimates of the parameters.

As described in Davis (2006), §4.6, the calculation is performed in
two steps: in the symbolic decomposition we determine the position
of the nonzeros in L from those in ZΛθ then, in the numeric
decomposition, we determine the numerical values in those positions.
Although the numeric decomposition may be done dozens, perhaps
hundreds of times as we iterate on θ, the symbolic decomposition is
only done once.
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A fill-reducing permutation, P

In practice it can be important while performing the symbolic
decomposition to determine a fill-reducing permutation, which is
written as a q × q permutation matrix, P . This matrix is just a
re-ordering of the columns of I q and has an orthogonality property,
PPT = PTP = I q .

When P is used, the factor Lθ is defined to be the sparse,
lower-triangular matrix that satisfies

LθL
T
θ = P

[
ΛT
θ Z

T
θ ZΛθ + I q

]
PT

In the Matrix package for R, the Cholesky method for a sparse,
symmetric matrix (class dsCMatrix) performs both the symbolic and
numeric decomposition. By default, it determines a fill-reducing
permutation, P . The update method for a Cholesky factor (class
CHMfactor) performs the numeric decomposition only.
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Applications to models with simple, scalar random effects

Recall that, for a model with simple, scalar random-effects terms only,
the matrix Σθ is block-diagonal in k blocks and the ith block is
σ2i I ni where ni is the number of levels in the ith grouping factor.

The matrix Λθ is also block-diagonal with the ith block being θiI ni ,
where θi = σi/σ.

Given the grouping factors for the model and a value of θ we produce
ZΛθ then L, using Cholesky the first time then update.

To avoid recalculating we assign

flist a list of the grouping factors
nlev number of levels in each factor
Zt the transpose of the model matrix, Z

theta current value of θ
Lambda current Λθ

Ut transpose of ZΛθ
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Cholesky factor for the Penicillin model

> flist <- subset(Penicillin , select = c(plate , sample ))

> Zt <- do.call(rBind , lapply(flist , as, "sparseMatrix"))

> (nlev <- sapply(flist , function(f) length(levels(factor(f)))))

plate sample

24 6

> theta <- c(1.2, 2.1)

> Lambda <- Diagonal(x = rep.int(theta , nlev))

> Ut <- crossprod(Lambda , Zt)

> str(L <- Cholesky(tcrossprod(Ut), LDL = FALSE , Imult = 1))

Formal class ’dCHMsimpl’ [package "Matrix"] with 10 slots

..@ x : num [1:189] 3.105 0.812 0.812 0.812 0.812 ...

..@ p : int [1:31] 0 7 14 21 28 35 42 49 56 63 ...

..@ i : int [1:189] 0 24 25 26 27 28 29 1 24 25 ...

..@ nz : int [1:30] 7 7 7 7 7 7 7 7 7 7 ...

..@ nxt : int [1:32] 1 2 3 4 5 6 7 8 9 10 ...

..@ prv : int [1:32] 31 0 1 2 3 4 5 6 7 8 ...

..@ colcount: int [1:30] 7 7 7 7 7 7 7 7 7 7 ...

..@ perm : int [1:30] 23 22 21 20 19 18 17 16 15 14 ...

..@ type : int [1:4] 2 1 0 1

..@ Dim : int [1:2] 30 30Douglas Bates (Stat. Dept.) Theory of LMMs Jan. 11, 2011 11 / 26



Images of ΛT
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TZΛθ + I and L
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Note that there are nonzeros in the lower right of L in positions that
are zero in the lower triangle of ΛT

θ Z
TZΛθ + I q . This is described

as “fill-in”.
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Reversing the order of the factors

To show the effect of a fill-reducing permutation, we reverse the order
of the factors and calculate the Cholesky factor with and without a
fill-reducing permutation.

We evaluate nnzero (number of nonzeros) for L, from the original
factor order, and for Lnoperm and Lperm, the reversed factor order
without and with permutation

> Zt <- do.call(rBind , lapply(flist [2:1], as, "sparseMatrix"))

> Lambda <- Diagonal(x = rep.int(theta [2:1], nlev [2:1]))

> Ut <- crossprod(Lambda , Zt)

> Lnoperm <- Cholesky(tcrossprod(Ut), perm = FALSE , LDL = FALSE , Imult = 1)

> Lperm <- Cholesky(tcrossprod(Ut), LDL = FALSE , Imult = 1)

> sapply(lapply(list(L, Lnoperm , Lperm), as , "sparseMatrix"), nnzero)

[1] 189 450 204
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Images of the reversed factor decompositions
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Without permutation, we get the worst possible fill-in. With a
fill-reducing permutation we get much less but still not as good as the
original factor order.
This is why the permutation is called “fill-reducing”, not
“fill-minimizing”. Getting the fill-minimizing permutation in the
general case is a very hard problem.
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Cholesky factor for the Pastes data

For the special case of nested grouping factors, such as in the Pastes

and classroom data, there is no fill-in, regardless of the permutation.

A permutation is nevertheless evaluated but it is a “post-ordering”
that puts the nonzeros near the diagonal.

> Zt <- do.call(rBind , lapply(flist <- subset(Pastes ,,c(sample , batch)),

+ as, "sparseMatrix"))

> nlev <- sapply(flist , function(f) length(levels(factor(f))))

> theta <- c(0.4, 0.5)

> Lambda <- Diagonal(x = rep.int(theta , nlev))

> Ut <- crossprod(Lambda , Zt)

> L <- Cholesky(tcrossprod(Ut), LDL = FALSE , Imult = 1)

> str(L@perm)

int [1:40] 2 1 0 30 5 4 3 31 8 7 ...
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Image of the factor for the Pastes data
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The image for the Cholesky factor from the classroom data model is
similar but, with more than 400 rows and columns, the squares for the
nonzeros are difficult to see.
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The conditional density, fU |Y

We know the joint density, fY,U (y ,u), and

fU |Y(u |y) =
fY,U (y ,u)∫
fY,U (y ,u) du

so we almost have fU |Y . The trick is evaluating the integral in the
denominator, which, it turns out, is exactly the likelihood,
L(θ,β, σ2|y), that we want to maximize.

The Cholesky factor, Lθ is the key to doing this because

PTLθL
T
θPµU |Y = ΛT

θ Z
T(y −Xβ).

Although the Matrix package provides a one-step solve method for
this, we write it in stages:

Solve Lcu = PΛT
θ Z

T(y −Xβ) for cu .
Solve LTPµ = cu for PµU |Y and µU |Y as PTPµU |Y .
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Evaluating the likelihood

The exponent of fY,U (y ,u) can now be written

‖y −Xβ − ZΛθu‖2 + ‖u‖2 = r2(θ,β) + ‖LTP(u − µU |Y)‖2.

where r2(θ,β) = ‖y −Xβ −UµU |Y‖2 + ‖µU |Y‖2. The first term
doesn’t depend on u and the second is relatively easy to integrate.

Use the change of variable v = LTP(u − µU |Y), with
dv = abs(|L||P |) du , in

∫ exp

(
−‖LTP(u−µU|Y )‖2

2σ2

)
(2πσ2)q/2

du

=

∫ exp
(
−‖v‖2
2σ2

)
(2πσ2)q/2

dv

abs(|L||P |)
=

1

abs(|L||P |)
=

1

|L|

because abs |P | = 1 and abs |L|, which is the product of its diagonal
elements, all of which are positive, is positive.
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Evaluating the likelihood (cont’d)

As is often the case, it is easiest to write the log-likelihood. On the
deviance scale (negative twice the log-likelihood)
`(θ,β, σ|y) = logL(θ,β, σ|y) becomes

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)

σ2
+ log(|Lθ|2)

We wish to minimize the deviance. Its dependence on σ is
straightforward. Given values of the other parameters, we can
evaluate the conditional estimate

σ̂2(θ,β) =
r2(θ,β)

n

producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
However, an even greater simplification is possible because the
deviance depends on β only through r2(θ,β).
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Profiling the deviance with respect to β

Because the deviance depends on β only through r2(θ,β) we can
obtain the conditional estimate, β̂θ, by extending the PLS problem to

r2θ = min
u ,β

[
‖y −Xβ − ZΛθu‖2 + ‖u‖2

]
with the solution satisfying the equations[

ΛT
θ Z

TZΛθ + I q U T
θX

XTZΛθ XTX

] [
µU |Y
β̂θ

]
=

[
ΛT
θ Z

Ty

XTy .

]
The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2θ
n

)]
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Solving the extended PLS problem

For brevity we will no longer show the dependence of matrices and
vectors on the parameter θ.

As before we use the sparse Cholesky decomposition, with L and P
satisfying LLT = P(ΛT

θ Z
TZΛθ + I ) and cu , the solution to

Lcu = PΛT
θ Z

Ty .

We extend the decomposition with the q × p matrix RZX , the upper
triangular p × p matrix RX , and the p-vector cβ satisfying

LRZX = PΛT
θ Z

TX

RT
XRX = XTX −RT

ZXRZX

RT
X cβ = XTy −RT

ZX cu

so that[
PTL 0

RT
ZX RT

X

] [
LTP RZX

0 RX

]
=

[
ΛT
θ Z

TZΛθ + I ΛT
θ Z

TX

XTZΛθ XTX

]
.
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Solving the extended PLS problem (cont’d)

Finally we solve

RX β̂θ = cβ

LTPµU |Y = cu −RZX β̂θ

The profiled REML criterion also can be expressed simply. The
criterion is

LR(θ, σ
2|y) =

∫
L(θ,β, σ2|y) dβ

The same change-of-variable technique for evaluating the integral
w.r.t. u as 1/ abs(|L|) produces 1/ abs(|RX |) here and removes
(2πσ2)p/2 from the denominator. On the deviance scale, the profiled
REML criterion is

−2˜̀R(θ) = log(|L|2) + log(|Rx |2) + (n − p)

[
1 + log

(
2πr2θ
n − p

)]
These calculations can be expressed in a few lines of R code. Assume
rho contains y, X, Zt, REML, L, nlev and XtX (XTX ).
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Code for evaluating the profiled deviance

profDev <- function(rho , theta) {

stopifnot(is.numeric(theta), length(theta )== length(rho$nlev))

Ut <- crossprod(Diagonal(x=rep.int(theta ,rho$nlev)),rho$Zt)

L <- update(rho$L, Ut, mult = 1)

cu <- solve(L, solve(L, Ut %*% rho$y, sys = "P"), sys = "L")

RZX <- solve(L, solve(L, Ut %*% rho$X, sys = "P"), sys = "L")

RX <- chol(rho$XtX - crossprod(RZX))

cb <- solve(t(RX),crossprod(rho$X,rho$y)- crossprod(RZX , cu))

beta <- solve(RX, cb)

u <- solve(L,solve(L,cu - RZX %*% beta , sys="Lt"), sys="Pt")

fitted <- as.vector(crossprod(Ut, u) + rho$X %*% beta)

prss <- sum(c(rho$y - fitted , as.vector(u))^2)

n <- length(fitted ); p <- ncol(RX)

if (rho$REML) return(determinant(L)$mod +

2 * determinant(RX)$mod +

(n-p) * (1+log(2*pi*prss/(n-p))))

determinant(L)$mod + n * (1 + log(2*pi*prss/n))

}
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Checking profDev, lmer version of fit

> invisible(lmer(mathgain ~ mathkind + minority + ses + (1| classid) + (1| schoolid), classroom , verbose = 1, REML = FALSE))

npt = 5 , n = 2

rhobeg = 0.2 , rhoend = 2e-07

0.020: 11: 11396.1;0.465012 0.298249

0.0020: 17: 11391.5;0.340940 0.314970

0.00020: 19: 11391.5;0.336337 0.313884

2.0e-05: 23: 11391.5;0.336012 0.314470

2.0e-06: 26: 11391.5;0.335979 0.314536

2.0e-07: 29: 11391.5;0.335979 0.314536

At return

34: 11391.532: 0.335980 0.314536
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How lmer works

Essentially lmer takes its arguments and creates a structure like the
rho environment shown above. The optimization of the profiled
deviance or the profiled REML criterion happens within this
environment.

The creation of Λθ is somewhat more complex for models with
vector-valued random effects but not excessively so.

Some care is taken to avoid allocating storage for large objects during
each function evaluation. Many of the objects created in profDev are
updated in place within lmer.

Once the optimizer, bobyqa, has converged some additional
information for the summary is calculated.
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Summary

For a linear mixed model, even one with a huge number of
observations and random effects like the model for the grade point
scores, evaluation of the ML or REML profiled deviance, given a value
of θ, is straightforward. It involves updating Λθ, Lθ, RZX , RX ,
calculating the penalized residual sum of squares, r2θ and two
determinants of triangular matrices.

The profiled deviance can be optimized as a function of θ only. The
dimension of θ is usually very small. For the grade point scores there
are only three components to θ.
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