
Chapter 5

Computational Methods for Mixed
Models

In this chapter we describe some of the details of the computational methods
for fitting linear mixed models, as implemented in the lme4 package, and the
theoretical development behind these methods. We also provide the basis for
later generalizations to models for non-Gaussian responses and to models
in which the relationship between the conditional mean, µ, and the linear
predictor, γ = Xβ + Zb = ZΛθ u + Xβ , is a nonlinear relationship.

This material is directed at those readers who wish to follow the theory
and methodology of linear mixed models and how both can be extended to
other forms of mixed models. Readers who are less interested in the “how”
and the “why” of fitting mixed models than in the results themselves should
not feel obligated to master these details.

We begin by reviewing the definition of linear mixed-effects models and
some of the basics of the computational methods, as given in Sect. 1.1.

5.1 Definitions and Basic Results

As described in Sect. 1.1, a linear mixed-effects model is based on two vector-
valued random variables: the q-dimensional vector of random effects, B, and
the n-dimensional response vector, Y . Equation (1.1) defines the uncondi-
tional distribution of B and the conditional distribution of Y , given B = b,
as multivariate Gaussian distributions of the form

(Y |B = b)∼N (Xβ + Zb,σ2I)
B ∼N (0,Σθ ).

The q× q, symmetric, variance-covariance matrix, Var(B) = Σθ , depends
on the variance-component parameter vector, θ , and is positive semidefinite,
which means that

bTΣθ b≥ 0, ∀b 6= 0. (5.1)
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84 5 Computational Methods for Mixed Models

(The symbol ∀ denotes “for all”.) The fact that Σθ is positive semidefinite
does not guarantee that Σ−1

θ exists. We would need a stronger property,
bTΣθ b > 0, ∀b 6= 0, called positive definiteness, to ensure that Σ−1

θ exists.
Many computational formulas for linear mixed models are written in terms

of Σ−1
θ . Such formulas will become unstable as Σθ approaches singularity.

And it can do so. It is a fact that singular (i.e. non-invertible) Σθ can and
do occur in practice, as we have seen in some of the examples in earlier
chapters. Moreover, during the course of the numerical optimization by which
the parameter estimates are determined, it is frequently the case that the
deviance or the REML criterion will need to be evaluated at values of θ that
produce a singular Σθ . Because of this we will take care to use computational
methods that can be applied even when Σθ is singular and are stable as Σθ
approaches singularity.

As defined in (1.2) a relative covariance factor, Λθ , is any matrix that
satisfies

Σθ = σ2Λθ ΛT
θ .

According to this definition, Σ depends on both σ and θ and we should
write it as Σσ ,θ . However, we will blur that distinction and continue to write
Var(B) = Σθ . Another technicality is that the common scale parameter, σ ,
can, in theory, be zero. We will show that in practice the only way for its
estimate, σ̂ , to be zero is for the fitted values from the fixed-effects only, Xβ̂ ,
to be exactly equal to the observed data. This occurs only with data that
have been (incorrectly) simulated without error. In practice we can safely
assume that σ > 0. However, Λθ , like Σθ , can be singular.

Our computational methods are based on Λθ and do not require evaluation
of Σθ . In fact, Σθ is explicitly evaluated only at the converged parameter
estimates.

The spherical random effects, U ∼N (0,σ2Iq), determine B as

B = Λθ U . (5.2)

Although it may seem more intuitive to write U as a linear transformation
of B, we cannot do that when Λθ is singular, which is why (5.2) is in the
form shown.

We can easily verify that (5.2) provides the desired distribution for B. As
a linear transformation of a multivariate Gaussian random variable, B will
also be multivariate Gaussian. Its mean and variance-covariance matrix are
straightforward to evaluate,

E[B] = Λθ E[U ] = Λθ 0 = 0 (5.3)

and
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5.2 The Conditional Distribution (U |Y = y) 85

Var(B) = E
[
(B−E[B])(B−E[B])T

]
= E

[
BBT

]
= E

[
Λθ U U TΛT

θ

]
= Λθ E[U U T]ΛT

θ = Λθ Var(U )ΛT
θ

= Λθ σ2Iq ΛT
θ = σ2Λθ ΛT

θ = Σθ

(5.4)

and have the desired form.
Just as we concentrate on how θ determines Λθ , not Σθ , we will concentrate

on properties of U rather than B. In particular, we now define the model
according to the distributions

(Y |U = u)∼N (ZΛθ u + Xβ ,σ2In)

U ∼N (0,σ2Iq).
(5.5)

To allow for extensions to other types of mixed models we distinguish
between the linear predictor

γ = ZΛθ u + Xβ (5.6)

and the conditional mean of Y , given U = u, which is

µ = E [Y |U = u] . (5.7)

For a linear mixed model µ = γ. In other forms of mixed models the condi-
tional mean, µ, can be a nonlinear function of the linear predictor, γ. For
some models the dimension of γ is a multiple of n, the dimension of µ and y,
but for a linear mixed model the dimension of γ must be n. Hence, the model
matrix Z must be n×q and X must be n× p.

5.2 The Conditional Distribution (U |Y = y)

In this chapter it will help to be able to distinguish between the observed
response vector and an arbitrary value of Y . For this chapter only we will
write the observed data vector as yobs, with the understanding that y without
the subscript will refer to an arbitrary value of the random variable Y .

The likelihood of the parameters, θ , β , and σ , given the observed data,
yobs, is the probability density of Y , evaluated at yobs. Although the nu-
merical values of the probability density and the likelihood are identical, the
interpretations of these functions are different. In the density we consider the
parameters to be fixed and the value of y as varying. In the likelihood we
consider y to be fixed at yobs and the parameters, θ , β and σ , as varying.

The natural approach for evaluating the likelihood is to determine the
marginal distribution of Y , which in this case amounts to determining the
marginal density of Y , and evaluate that density at yobs. To follow this course
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86 5 Computational Methods for Mixed Models

we would first determine the joint density of U and Y , written fU ,Y (u,y),
then integrate this density with respect u to create the marginal density,
fY (y), and finally evaluate this marginal density at yobs.

To allow for later generalizations we will change the order of these steps
slightly. We evaluate the joint density function, fU ,Y (u,y), at yobs, producing
the unnormalized conditional density, h(u). We say that h is “unnormalized”
because the conditional density is a multiple of h

fU |Y (u|yobs) =
h(u)∫

Rq h(u)du
. (5.8)

In some theoretical developments the normalizing constant, which is the inte-
gral in the denominator of an expression like (5.8), is not of interest. Here it
is of interest because the normalizing constant is exactly the likelihood that
we wish to evaluate,

L(θ ,β ,σ |yobs) =
∫

Rq
h(u)du. (5.9)

For a linear mixed model, where all the distributions of interest are mul-
tivariate Gaussian and the conditional mean, µ, is a linear function of both
u and β , the distinction between evaluating the joint density at yobs to pro-
duce h(u) then integrating with respect to u, as opposed to first integrating
the joint density then evaluating at yobs is not terribly important. For other
mixed models this distinction can be important. In particular, generalized
linear mixed models, described in Sect. ??, are often used to model a discrete
response, such as a binary response or a count, leading to a joint distribution
for Y and U that is discrete with respect to one variable, y, and contin-
uous with respect to the other, u. In such cases there isn’t a joint density
for Y and U . The necessary distribution theory for general y and u is well-
defined but somewhat awkward to describe. It is much easier to realize that
we are only interested in the observed response vector, yobs, not some arbi-
trary value of y, so we can concentrate on the conditional distribution of U
given Y = yobs. For all the mixed models we will consider, the conditional
distribution, (U |Y = yobs), is continuous and both the conditional density,
fU |Y (u|yobs), and its unnormalized form, h(u), are well-defined.

5.3 Integrating h(u) in the Linear Mixed Model

The integral defining the likelihood in (5.9) has a closed form in the case of
a linear mixed model but not for some of the more general forms of mixed
models. To motivate methods for approximating the likelihood in more gen-
eral situations, we describe in some detail how the integral can be evaluated
using the sparse Cholesky factor, Lθ , and the conditional mode,
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5.3 Integrating h(u) in the Linear Mixed Model 87

ũ = argmax
u

fU |Y (u|yobs) = argmax
u

h(u) = argmax
u

fY |U (yobs|u) fU (u) (5.10)

The notation argmaxu means that ũ is the value of u that maximizes the
expression that follows.

In general, the mode of a continuous distribution is the value of the ran-
dom variable that maximizes the density. The value ũ is called the conditional
mode of u, given Y = yobs, because ũ maximizes the conditional density of
U given Y = yobs. The location of the maximum can be determined by max-
imizing the unnormalized conditional density because h(u) is just a constant
multiple of fU |Y (u|yobs). The last part of (5.10) is simply a re-expression of
h(u) as the product of fY |U (yobs|u) and fU (u). For a linear mixed model
these densities are

fY |U (y|u) =
1

(2πσ2)n/2 exp

(
−‖y−Xβ −ZΛθ u‖2

2σ2

)
(5.11)

fU (u) =
1

(2πσ2)q/2 exp
(
−‖u‖

2

2σ2

)
(5.12)

with product

h(u) =
1

(2πσ2)(n+q)/2 exp

(
−‖yobs−Xβ −ZΛθ u‖2 +‖u‖2

2σ2

)
. (5.13)

On the deviance scale we have

−2log(h(u)) = (n + q) log(2πσ2)+
‖yobs−Xβ −ZΛθ u‖2 +‖u‖2

σ2 . (5.14)

Because (5.14) describes the negative log density, ũ will be the value of u that
minimizes the expression on the right of (5.14).

The only part of the right hand side of (5.14) that depends on u is the
numerator of the second term. Thus

ũ = argmin
u
‖yobs−Xβ −ZΛθ u‖2 +‖u‖2. (5.15)

The expression to be minimized, called the objective function, is described as
a penalized residual sum of squares (PRSS) and the minimizer, ũ, is called the
penalized least squares (PLS) solution. They are given these names because
the first term in the objective, ‖yobs−Xβ −ZΛθ u‖2, is a sum of squared
residuals, and the second term, ‖u‖2, is a penalty on the length, ‖u‖, of u.
Larger values of u (in the sense of greater lengths as vectors) incur a higher
penalty.

The PRSS criterion determining the conditional mode balances fidelity to
the observed data (i.e. producing a small residual sum of squares) against
simplicity of the model (small ‖u‖). We refer to this type of criterion as
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88 5 Computational Methods for Mixed Models

a smoothing objective, in the sense that it seeks to smooth out the fitted
response by reducing model complexity while still retaining reasonable fidelity
to the observed data.

For the purpose of evaluating the likelihood we will regard the PRSS crite-
rion as a function of the parameters, given the data, and write its minimum
value as

r2
θ ,β = min

u
‖yobs−Xβ −ZΛθ u‖2 +‖u‖2. (5.16)

Notice that β only enters the right hand side of (5.16) through the linear
predictor expression. We will see that ũ can be determined by a direct (i.e.
non-iterative) calculation and, in fact, we can minimize the PRSS criterion
with respect to u and β simultaneously without iterating. We write this
minimum value as

r2
θ = min

u,β
‖yobs−Xβ −ZΛθ u‖2 +‖u‖2. (5.17)

The value of β at the minimum is called the conditional estimate of β given
θ , written β̂ θ .

5.4 Determining the PLS Solutions, ũ and β̂ θ

One way of expressing a penalized least squares problem like (5.16) is by incor-
porating the penalty as “pseudo-data” in an ordinary least squares problem.
We extend the “response vector”, which is yobs−Xβ when we minimize with
respect to u only, with q responses that are 0 and we extend the predictor
expression, ZΛθ u with Iqu. Writing this as a least squares problem produces

ũ = argmin
u

∥∥∥∥[yobs−Xβ
0

]
−
[

ZΛθ
Iq

]
u
∥∥∥∥2

(5.18)

with a solution that satisfies(
ΛT

θ ZTZΛθ + Iq

)
ũ = ΛT

θ ZT (yobs−Xβ ) (5.19)

To evaluate ũ we form the sparse Cholesky factor, Lθ , which is a lower
triangular q×q matrix that satisfies

Lθ LT
θ = ΛT

θ ZTZΛθ + Iq. (5.20)

The actual evaluation of sparse Cholesky factor, Lθ , often incorporates a
fill-reducing permutation, which we describe next.

Page: 88 job: lMMwR macro: svmono.cls date/time: 17-Feb-2010/14:23



5.4 Determining the PLS Solutions, ũ and β̂ θ 89

5.4.1 The Fill-reducing Permutation, P

In earlier chapters we have seen that often the random effects vector is re-
ordered before Lθ is created. The re-ordering or permutation of the elements
of u and, correspondingly, the columns of the model matrix, ZΛθ , does not
affect the theory of linear mixed models but can have a profound effect on
the time and storage required to evaluate Lθ in large problems. We write the
effect of the permutation as multiplication by a q×q permutation matrix, P,
although in practice we apply the permutation without ever constructing P.
That is, the matrix P is only a notational convenience only.

The matrix P consists of permuted columns of the identity matrix, Iq,
and it is easy to establish that the inverse permutation corresponds to mul-
tiplication by PT. Because multiplication by P or by PT simply re-orders the
components of a vector, the length of the vector is unchanged. Thus,

‖Pu‖2 = ‖u‖2 = ‖PTu‖2 (5.21)

and we can express the penalty in (5.17) in any of these three forms. The
properties of P that it preserves lengths of vectors and that its transpose is
its inverse are summarized by stating that P is an orthogonal matrix.

The permutation represented by P is determined from the structure of
ΛT

θ ZTZΛθ + Iq for some initial value of θ . The particular value of θ does not
affect the result because the permutation depends only the positions of the
non-zeros, not the numerical values at these positions.

Taking into account the permutation, the sparse Cholesky factor, Lθ , is
defined to be the sparse, lower triangular, q×q matrix with positive diagonal
elements satisfying

Lθ LT
θ = P

(
ΛT

θ ZTZΛθ + Iq

)
PT. (5.22)

Note that we now require that the diagonal elements of Λθ be positive. Prob-
lems 5.1 and 5.2 indicate why we can require this. Because the diagonal ele-
ments of Λθ are positive, its determinant, |Λθ |, which, for a triangular matrix
such as Λθ , is simply the product of its diagonal elements, is also positive.

Many sparse matrix methods, including the sparse Cholesky decomposi-
tion, are performed in two stages: the symbolic phase in which the locations
of the non-zeros in the result are determined and the numeric phase in which
the numeric values at these positions are evaluated. The symbolic phase for
the decomposition (5.22), which includes determining the permutation, P,
need only be done once. Evaluation of Lθ for subsequent values of θ requires
only the numeric phase, which typically is much faster than the symbolic
phase.

The permutation, P, serves two purposes. The first and most important
purpose is to reduce the number of non-zeros in the factor, Lθ . The factor
is potentially non-zero at every non-zero location in the lower triangle of the
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90 5 Computational Methods for Mixed Models

matrix being decomposed. However, as we saw in Fig. 2.4 of Sect. 2.1.2, there
may be positions in the factor that get filled-in even though they are known
to be zero in the matrix being decomposed. The fill-reducing permutation is
chosen according to certain heuristics to reduce the amount of fill-in. We use
the approximate minimal degree (AMD) method described in Davis [1996].
After the fill-reducing permutation is determined, a“post-ordering”is applied.
This has the effect of concentrating the non-zeros near the diagonal of the
factor. See Davis [2006] for details.

The pseudo-data representation of the PLS problem, (5.18), becomes

ũ = argmin
u

∥∥∥∥[yobs−Xβ
0

]
−
[

ZΛθ PT

PT

]
Pu
∥∥∥∥2

(5.23)

and the system of linear equations satisfied by ũ is

Lθ LT
θ Pũ = P

(
ΛT

θ ZTZΛθ + Iq

)
PTPũ = PΛT

θ ZT (yobs−Xβ ) . (5.24)

Obtaining the Cholesky factor, Lθ , may not seem to be great progress
toward determining ũ because we still must solve (5.24) for ũ. However, it
is the key to the computational methods in the lme4 package. The ability
to evaluate Lθ rapidly for many different values of θ is what makes the
computational methods in lme4 feasible, even when applied to very large
data sets with complex structure. Once we evaluate Lθ it is straightforward
to solve (5.24) for ũ because Lθ is triangular.

In Sect. 5.6 we will describe the steps in determining this solution. First,
though, we should show that the solution, ũ, and the value of the objective
at the solution, r2

θ ,β , do allow us to evaluate the deviance.

5.4.2 The Value of the Deviance and Profiled Deviance

After evaluating Lθ and using that to solve for ũ, which also produces r2
β ,θ ,

we can write the PRSS for a general u as

‖yobs−Xβ −ZΛθ u‖2 +‖u‖2 = r2
θ ,β +‖LT

θ (u− ũ)‖2 (5.25)

which finally allows us to evaluate the likelihood. We plug the right hand side
of (5.25) into the definition of h(u) and apply the change of variable

z =
LT

θ (u− ũ)
σ

. (5.26)

The determinant of the Jacobian of this transformation,
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5.4 Determining the PLS Solutions, ũ and β̂ θ 91∣∣∣∣ dz
du

∣∣∣∣=

∣∣∣∣∣LT
θ

σ

∣∣∣∣∣=
|Lθ |
σq (5.27)

is required for the change of variable in the integral. We use the letter z for the
transformed value because we will rearrange the integral to have the form of
the integral of the density of the standard multivariate normal distribution.
That is, we will use the result

∫
Rq

e−‖z‖2/2

(2π)q/2 dz = 1. (5.28)

Putting all these pieces together gives

L(θ ,β ,σ) =
∫

Rq
h(u)du

=
∫

Rq

1
(2πσ2)(n+q)/2 exp

(
−

r2
θ ,β +‖LT

θ (u− ũ)‖2

2σ2

)
du

=
exp
(
− r2

θ ,β
2σ2

)
(2πσ2)n/2

∫
Rq

1
(2π)q/2 exp

(
−‖L

T
θ (u− ũ)‖2

2σ2

)
|Lθ |
|Lθ |

du
σq

=
exp
(
− r2

θ ,β
2σ2

)
(2πσ2)n/2|Lθ |

∫
Rq

e−‖z‖2/2

(2π)q/2 dz

=
exp
(
− r2

θ ,β
2σ2

)
(2πσ2)n/2|Lθ |

.

(5.29)

The deviance can now be expressed as

d(θ ,β ,σ |yobs) =−2log(L(θ ,β ,σ |yobs)) = n log(2πσ2)+ 2log |Lθ |+
r2

β ,θ

σ2 ,

as stated in (1.6). The maximum likelihood estimates of the parameters are
those that minimize this deviance.

Equation (1.6) is a remarkably compact expression, considering that the
class of models to which it applies is very large indeed. However, we can
do better than this if we notice that β affects (1.6) only through r2

β ,θ , and,
for any value of θ , minimizing this expression with respect to β is just an
extension of the penalized least squares problem. Let β̂ θ be the value of β
that minimizes the PRSS simultaneously with respect to β and u and let r2

θ

be the PRSS at these minimizing values. If, in addition, we set σ̂2θ = r2
θ /n,

which is the value of σ2 that minimizes the deviance for a given value of r2
θ ,

then the profiled deviance, which is a function of θ only, becomes
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92 5 Computational Methods for Mixed Models

d̃(θ |yobs) = 2log |Lθ |+ n
[

1 + log
(

2πr2
θ

n

)]
. (5.30)

Numerical optimization (minimization) of d̃(θ |yobs) with respect to θ de-
termines the MLE, θ̂ . The MLEs for the other parameters, β̂ and σ̂ , are the
corresponding conditional estimates evaluated at θ̂ .

5.4.3 Determining r2
θ and β̂ θ

To determine ũ and β̂ θ simultaneously we rearrange the terms in (5.23) as[
ũ

β̂ θ

]
= argmin

u,β

∥∥∥∥[yobs

0

]
−
[

ZΛθ PT X
PT 0

][
Pu
β

]∥∥∥∥2

. (5.31)

The PLS values, ũ and β̂ θ , are the solutions to[
P
(
ΛT

θ ZTZΛθ + Iq
)

PT PΛT
θ ZTX

XTZΛθ PT XTX

][
Pũ
β̂ θ

]
=
[

PΛT
θ ZTyobs

XTyobs.

]
(5.32)

To evaluate these solutions we decompose the system matrix as[
P
(
ΛT

θ ZTZΛθ + Iq
)

PT PΛT
θ ZTX

XTZΛθ PT XTX

]
=
[

Lθ 0
RT

ZX RT
X

][
LT

θ RZX
0 RX

]
(5.33)

where, as before, Lθ , the sparse Cholesky factor, is the sparse lower triangular
q×q matrix satisfying (5.22). The other two matrices in (5.33): RZX , which
is a general q× p matrix, and RX , which is an upper triangular p× p matrix,
satisfy

Lθ RZX = PΛT
θ ZTX (5.34)

and
RT

X RX = XTX−RT
ZX RZX (5.35)

Those familiar with standard ways of writing a Cholesky decomposition
as either LLT or RTR (L is the factor as it appears on the left and R is as
it appears on the right) will notice a notational inconsistency in (5.33). One
Cholesky factor is defined as the lower triangular fractor on the left and the
other is defined as the upper triangular factor on the right. It happens that
in R the Cholesky factor of a dense positive-definite matrix is returned as the
right factor, whereas the sparse Cholesky factor is returned as the left factor.

One other technical point that should be addressed is whether XTX−
RT

ZX RZX is positive definite. In theory, if X has full column rank, so that XTX
is positive definite, then the downdated matrix, XTX−RT

ZX RZX , must also
be positive definite (see Prob. 5.4). In practice, the downdated matrix can
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5.5 The REML Criterion 93

become computationally singular in ill-conditioned problems, in which case
an error is reported.

The extended decomposition (5.33) not only provides for the evaluation of
the profiled deviance function, d̃(θ), (5.30) but also allows us to define and
evaluate the profiled REML criterion.

5.5 The REML Criterion

The so-called REML estimates of variance components are often preferred
to the maximum likelihood estimates. (“REML” can be considered to be an
acronym for “restricted” or “residual” maximum likelihood, although neither
term is completely accurate because these estimates do not maximize a like-
lihood.) We can motivate the use of the REML criterion by considering a
linear regression model,

Y ∼N (Xβ ,σ2In), (5.36)

in which we typically estimate σ2 as

σ̂2
R =
‖yobs−Xβ̂‖2

n− p
(5.37)

even though the maximum likelihood estimate of σ2 is

σ̂2
L =
‖yobs−Xβ̂‖2

n
. (5.38)

The argument for preferring σ̂2
R to σ̂2

L as an estimate of σ2 is that the nu-
merator in both estimates is the sum of squared residuals at β̂ and, although
the residual vector, yobs−Xβ̂ , is an n-dimensional vector, the residual at θ̂
satisfies p linearly independent constraints, XT(yobs−Xβ̂ ) = 0. That is, the
residual at θ̂ is the projection of the observed response vector, yobs, into an
(n− p)-dimensional linear subspace of the n-dimensional response space. The
estimate σ̂2

R takes into account the fact that σ2 is estimated from residuals
that have only n− p degrees of freedom.

Another argument often put forward for REML estimation is that σ̂2
R is an

unbiased estimate of σ2, in the sense that the expected value of the estimator
is equal to the value of the parameter. However, determining the expected
value of an estimator involves integrating with respect to the density of the
estimator and we have seen that densities of estimators of variances will be
skewed, often highly skewed. It is not clear why we should be interested in
the expected value of a highly skewed estimator. If we were to transform to a
more symmetric scale, such as the estimator of the standard deviation or the
estimator of the logarithm of the standard deviation, the REML estimator
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94 5 Computational Methods for Mixed Models

would no longer be unbiased. Furthermore, this property of unbiasedness of
variance estimators does not generalize from the linear regression model to
linear mixed models. This is all to say that the distinction between REML
and ML estimates of variances and variance components is probably less
important that many people believe.

Nevertheless it is worthwhile seeing how the computational techniques
described in this chapter apply to the REML criterion because the REML
parameter estimates θ̂ R and σ̂2

R for a linear mixed model have the property

that they would specialize to σ̂2
R from (5.37) for a linear regression model, as

seen in Sect. 1.3.2.
Although not usually derived in this way, the REML criterion (on the

deviance scale) can be expressed as

dR(θ ,σ |yobs) =−2log
∫

Rp
L(θ ,β ,σ |yobs)dβ . (5.39)

The REML estimates θ̂ R and σ̂2
R minimize dR(θ ,σ |yobs).

To evaluate this integral we form an expansion, similar to (5.25), of r2
θ ,β

about β̂ θ
r2

θ ,β = r2
θ +‖RX (β − β̂ θ )‖2. (5.40)

In the same way that (5.25) was used to simplify the integral in (5.29), we
can derive ∫

Rp

exp
(
− r2

θ ,β
2σ2

)
(2πσ2)n/2|Lθ |

dβ =
exp
(
− r2

θ
2σ2

)
(2πσ2)(n−p)/2|Lθ ||RX |

(5.41)

corresponding to a REML criterion on the deviance scale of

dR(θ ,σ |yobs) = (n− p) log(2πσ2)+ 2log(|Lθ ||RX |)+
r2

θ
σ2 . (5.42)

Plugging in the conditional REML estimate, σ̂2R = r2
θ /(n− p), provides the

profiled REML criterion

d̃R(θ |yobs) = 2log(|Lθ ||RX |)+(n− p)
[

1 + log
(

2πr2
θ

n− p

)]
(5.43)

The REML estimate of θ is

θ̂ R = argmin
θ

d̃R(θ |yobs), (5.44)

and the REML estimate of σ2 is the conditional REML estimate of σ2 at θ̂ R,

σ̂2
R = r2

θ̂R
/(n− p). (5.45)

Page: 94 job: lMMwR macro: svmono.cls date/time: 17-Feb-2010/14:23



5.6 Step-by-step Evaluation of the Profiled Deviance 95

It is not entirely clear how one would define a “REML estimate” of β because
the REML criterion, dR(θ ,σ |y), defined in (5.42), does not depend on β .
However, it is customary (and not unreasonable) to use β̂ R = β̂ θ̂ R

as the
REML estimate of β .

5.6 Step-by-step Evaluation of the Profiled Deviance

As we have seen, an object returned by lmer contains an environment, ac-
cessed with the env extractor. This environment contains several matrices and
vectors that are used in the evaluation of the profiled deviance. In this section
we use these matrices and vectors from one of our examples to explicitly trace
the steps in evaluating the profiled deviance. This level of detail is provided
for those whose style of learning is more of a “hands on” style and for those
who may want to program modifications of this approach.

Consider our model fm8, fit as

> fm8 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy,

+ REML = 0, verbose = TRUE)

0: 1784.6423: 1.00000 0.00000 1.00000

1: 1774.2946: 1.00042 -0.00836471 0.725280

2: 1754.3212: 0.998969 -0.0239943 0.175808

3: 1752.1500: 0.998284 0.00682229 0.243192

...

The environment of the model contains the converged parameter vector,
θ (theta), the relative covariance factor, Λθ (Lambda), the sparse Cholesky
factor, Lθ (L), the matrices RZX (RZX) and RX (RX), the conditional mode, ũ
(u), and the conditional estimate, β̂ θ (fixef). The permutation represented
by P is contained in the sparse Cholesky representation, L.

Although the model matrices, X (X) and ZT (Zt), and the response vector,
yobs (y), are available in the environment, many of the products that involve
only these fixed values are precomputed and stored separately under the
names XtX (XTX), Xty, ZtX and Zty.

To provide easy access to the objects in the environment of fm8 we attach
it to the search path.

> attach(env(fm8))

Please note that this is done here for illustration only. The practice of attach-
ing a list or a data frame or, less commonly, an environment in an R session
is overused, somewhat dangerous (because of the potential of forgetting to
detach it later) and discouraged. The preferred practice is to use the with

function to gain access by name to components of such composite objects.
For this section of code, however, using with or within would quickly become
very tedious and we use attach instead.
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96 5 Computational Methods for Mixed Models

To update the matrix Λθ to a new value of θ we need to know which of
the non-zeros in Λ are updated from which elements of θ . Recall that the
dimension of θ is small (3, in this case) but Λ is potentially large (18× 18
with 54 non-zeros). The environment contains an integer vector Lind that
maps the elements of theta to the non-zeros in Lambda.

Suppose we wish to recreate the evaluation of the profiled deviance at the
initial value of θ = (1,0,1). We begin by updating Λθ and forming the product
UT = ΛT

θ ZT

> str(Lambda)

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

..@ i : int [1:54] 0 1 1 2 3 3 4 5 5 6 ...

..@ p : int [1:37] 0 2 3 5 6 8 9 11 12 14 ...

..@ Dim : int [1:2] 36 36

..@ Dimnames:List of 2

.. ..$ : NULL

.. ..$ : NULL

..@ x : num [1:54] 0.9292 0.0182 0.2226 0.9292 0.0182 ...

..@ factors : list()

> str(Lind)

int [1:54] 1 2 3 1 2 3 1 2 3 1 ...

> Lambda@x[] <- c(1,0,1)[Lind]

> str(Lambda@x)

num [1:54] 1 0 1 1 0 1 1 0 1 1 ...

> Ut <- crossprod(Lambda, Zt)

The Cholesky factor object, L, can be updated from Ut without forming UTU+
I explicitly. The optional argument mult to the update method specifies a
multiple of the identity to be added to UTU
> L <- update(L, Ut, mult = 1)

Then we evaluate RZX and RX according to (5.34) and (5.35)

> RZX <- solve(L, solve(L, crossprod(Lambda, ZtX), sys = "P"), sys = "L")

> RX <- chol(XtX - crossprod(RZX))

Solving (5.32) for ũ and β̂ θ is done in stages. Writing cu and cβ for the
intermediate results that satisfy[

Lθ 0
RT

ZX RT
X

][
cu
cβ

]
=
[

PΛT
θ ZTyobs

XTyobs.

]
(5.46)

we evaluate

> cu <- solve(L, solve(L, crossprod(Lambda, Zty), sys = "P"), sys = "L")

> cbeta <- solve(t(RX), Xty - crossprod(RZX, cu))
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The next set of equations to solve is[
LT

θ RZX
0 RX

][
Pũ
β̂ θ

]
=
[

cU
cβ

]
(5.47)

> fixef <- as.vector(solve(RX, cbeta))

> u <- solve(L, solve(L, cu - RZX %*% fixef, sys = "Lt"), sys = "Pt")

We can now create the conditional mean, mu, the penalized residual sum of
squares, prss, the logarithm of the square of the determinant of L, ldL2, and
the profiled deviance, which, fortuitously, equals the value shown earlier.

> mu <- gamma <- as.vector(crossprod(Ut, u) + X %*% fixef)

> prss <- sum(c(y - mu, as.vector(u))^2)

> ldL2 <- 2 * as.vector(determinant(L)$mod)

> (deviance <- ldL2 + nobs * (1 + log(2 * pi * prss/nobs)))

[1] 1784.642

The last step is detach the environment of fm8 from the search list

> detach()

to avoid later name clashes.
In terms of the calculations performed, these steps describe exactly the

evaluation of the profiled deviance in lmer. The actual function for evaluating
the deviance, accessible as fm8@setPars, is a slightly modified version of what
is shown above. However, the modifications are only to avoid creating copies
of potentially large objects and to allow for cases where the model matrix, X,
is sparse. In practice, unless the optional argument compDev = FALSE is given,
the profiled deviance is evaluated in compiled code, providing a speed boost,
but the R code can be used if desired. This allows for checking the results
from the compiled code and can also be used as a template for extending the
computational methods to other types of models.

5.7 Generalizing to Other Forms of Mixed Models

In later chapters we cover the theory and practice of generalized linear mixed
models (GLMMs), nonlinear mixed models (NLMMs) and generalized non-
linear mixed models (GNLMMs). Because quite a bit of the theoretical and
computational methodology covered in this chapter extends to those models
we will cover the common aspects here.
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98 5 Computational Methods for Mixed Models

5.7.1 Descriptions of the Model Forms

We apply the name “generalized” to models in which the conditional distri-
bution, (Y |U = u), is not required to be Gaussian but does preserve some
of the properties of the spherical Gaussian conditional distribution

(Y |U = u)∼N (ZΛθ u + Xβ ,σ2In)

from the linear mixed model. In particular, the components of Y are con-
ditionally independent, given U = u. Furthermore, u affects the distribu-
tion only through the conditional mean, which we will continue to write
as µ, and it affects the conditional mean only through the linear predictor,
γ = ZΛθ u + Xβ .

Typically we do not have µ = γ, however. The elements of the linear pre-
dictor, γ, can be positive or negative or zero. Theoretically they can take
on any value between −∞ and ∞. But many distributional forms used in
GLMMs put constraints on the value of the mean. For example, the mean
of a Bernoulli random variable, modeling a binary response, must be in the
range 0 < µ < 1 and the mean of a Poisson random variable, modeling a count,
must be positive. To achieve these constraints we write the conditional mean,
µ as a transformation of the unbounded predictor, written η . For historical,
and some theoretical, reasons the inverse of this transformation is called the
link function, written

η = g(µ), (5.48)

and the transformation we want is called the inverse link, writted g−1.
Both g and g−1 are determined by scalar functions, g and g−1, respectively,

applied to the individual components of the vector argument. That is, η must
be n-dimensional and the vector-valued function µ = g−1(η) is defined by the
component functions µi = g−1(ηi), i = 1, . . . ,n. Among other things, this means
that the Jacobian matrix of the inverse link, dµ

dη , will be diagonal.
Because the link function, g, and the inverse link, g−1, are nonlinear func-

tions (there would be no purpose in using a linear link function) many people
use the terms “generalized linear mixed model” and “nonlinear mixed model”
interchangably. We reserve the term “nonlinear mixed model” for the type
of models used, for example, in pharmacokinetics and pharmacodynamics,
where the conditional distribution is a spherical multivariate Gaussian

(Y |U = u)∼N (µ,σ2In) (5.49)

but µ depends nonlinearly on γ. For NLMMs the length of the linear predic-
tor, γ, is a multiple, ns, of n, the length of µ.

Like the map from η to µ, the map from γ to µ has a “diagonal” property,
which we now describe. If we use γ to fill the columns of an n× s matrix,
Γ , then µi depends only on the ith row of Γ . In fact, µi is determined by a
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5.7 Generalizing to Other Forms of Mixed Models 99

nonlinear model function, f , applied to the i row of Γ . Writing µ = f(γ) based
on the component function f , we see that the Jacobian of f, dµ

dγ , will be the
vertical concatenation of s diagonal n×n matrices.

Because we will allow for generalized nonlinear mixed models (GNLMMs),
in which the mapping from γ to µ has the form

γ → η → µ, (5.50)

we will use (5.50) in our definitions.

5.7.2 Determining the Conditional Mode, ũ

For all these types of mixed models, the conditional distribution, (U |Y =
yobs), is a continuous distribution for which we can determine the unscaled
conditional density, h(u). As for linear mixed models, we define the condi-
tional mode, ũ as the value that maximizes the unscaled condtional density.

Determining the conditional mode, ũ, in a nonlinear mixed model is a
penalized nonlinear least squares (PNLS) problem

ũ = argmin
u
‖yobs−µ‖2 +‖u‖2 (5.51)

which we solve by adapting the iterative techniques, such as the Gauss-
Newton method [Bates and Watts, 1988, Sect. 2.2.1], used for nonlinear least
squares. Starting at an initial value, u(0), (the bracketed superscript denotes
the iteration number) with conditional mean, µ(0), we determine an increment
δ (1) by solving the penalized linear least squares problem,

δ (1) = argmin
δ

∥∥∥∥[yobs−µ(0)

0−u(0)

]
−
[

U(0)

Iq

]
δ
∥∥∥∥2

(5.52)

where

U(0) =
dµ
du

∣∣∣∣
u(0)

. (5.53)

Naturally, we use the sparse Cholesky decomposition, L(0)
θ , satisfying

L(0)
θ

(
L(0)

θ

)
= P

[(
U(0)

)T
U(0) + Iq

]
PT (5.54)

to determine this increment. The next iteration begins at

u(1) = u(0) + kδ (1) (5.55)
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where k is the step factor chosen, perhaps by step-halving [Bates and Watts,
1988, Sect. 2.2.1], to ensure that the penalized residual sum of squares de-
creases at each iteration. Convergence is declared when the orthogonality
convergence criterion [Bates and Watts, 1988, Sect. 2.2.3] is below some pre-
specified tolerance.

The Laplace approximation to the deviance is

d(θ ,β ,σ |yobs)≈= n log(2πσ2)+ 2log |Lθ ,β |+
r2

θ ,β

σ2 , (5.56)

where the Cholesky factor, Lθ ,β , and the penalized residual sum of squares,
r2

θ ,β , are both evaluated at the conditional mode, ũ. The Cholesky factor
depends on θ , β and u for these models but typically the dependence on β
and u is weak.

5.8 Chapter Summary

The definitions and the computational results for maximum likelihood estima-
tion of the parameters in linear mixed models were summarized in Sect. 1.4.1.
A key computation is evaluation of the sparse Cholesky factor, Λθ , satisfying
eqn. 5.22,

Lθ LT
θ = P

(
ΛT

θ ZTZΛθ + Iq

)
PT.

where P represents the fill-reducing permutation determined during the sym-
bolic phase of the sparse Cholesky decomposition.

An extended decomposition (eqn. 5.33) provides the q× p matrix RZX and
the p× p upper triangular RX that are used to determine the conditional
mode ũθ , the conditional estimate β̂ θ and the minimum penalized residual
sum of squares, r2

θ from which the profiled deviance

d̃(θ |yobs) = 2log |Lθ |+ n
[

1 + log
(

2πr2
θ

n

)]
.

or the profile REML criterion

d̃R(θ |yobs) = 2log(|Lθ ||RX |)+(n− p)
[

1 + log
(

2πr2
θ

n− p

)]
can be evaluated and optimized (minimized) with respect to θ .

Page: 100 job: lMMwR macro: svmono.cls date/time: 17-Feb-2010/14:23
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Exercises

Unlike the exercises in other chapters, these exercises establish theoretical
results, which do not always apply exactly to the computational results.

5.1. Show that the matrix Aθ = PΛT
θ ZTZΛθ PT + Iq is positive definite. That

is, bTAb > 0, ∀b 6= 0.

5.2. (a) Show that Λθ can be defined to have non-negative diagonal elements.
(Hint: Show that the product Λθ D where D is a diagonal matrix with
diagonal elements of ±1 is also a Cholesky factor. Thus the signs of the
diagonal elements can be chosen however we want.)

(b) Use the result of Prob. 5.1 to show that the diagonal elements of Λθ must
be non-zero. (Hint: Suppose that the first zero on the diagonal of Λθ is in
the ith position. Show that there is a solution x to ΛT

θ x = 0 with xi = 1
and x j = 0, j = i+1, . . . ,q and that this x contradicts the positive definite
condition.)

5.3. Show that if X has full column rank, which means that there does not
exist a β 6= 0 for which Xβ = 0, then XTX is positive definite.

5.4. Show that if X has full column rank then[
ZΛθ PT X

PT 0

]
also must have full column rank. (Hint: First show that u must be zero in

any vector
[

u
β

]
satisfying

[
ZΛθ PT X

PT 0

][
u
β

]
= 0.

Use this result and (5.33) to show that[
Lθ 0

RT
ZX RT

X

][
LT

θ RZX
0 RX

]
is positive definite and, hence, RX is non-singular.)
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