
Mixed models in R using the lme4 package
Part 1: Introduction to R

Douglas Bates

University of Wisconsin - Madison
and R Development Core Team

<Douglas.Bates@R-project.org>

Max Planck Institute for Ornithology
Seewiesen

July 21, 2009

Outline

Web sites

What is R?

Organizing data

Accessing and modifying variables

Subsets of data frames

Missing Data

Web sites associated with this short course

www.R-project.org Main web site for the R Project

cran.R-project.org Comprehensive R Archive Network primary site

cran.de.R-project.org Main German mirror for CRAN

R-forge.R-project.org R-Forge, development site for many public R
packages. This is also the URL of the repository for
installing the development versions of the lme4 and
Matrix packages, if you are so inclined.

lme4.R-forge.R-project.org development site for the lme4 package

lme4.R-forge.R-project.org/slides/2009-07-21-Seewiesen web site
for this short course

R

I R is an Open Source (and freely available) environment for
statistical computing and graphics.

I The CRAN links given previously provide binary downloads for
Windows, for Mac OS X and for several flavors of Linux.
Source code is also available.

I R is under active development - typically two major releases
per year.

I R provides data manipulation and display facilities and most
statistical procedures. It can be extended with “packages”
containing data, code and documentation. Currently there are
more than 1800 contributed packages in the Comprehensive R
Archive Network (CRAN).

Simple calculator usage

I The R application is started by clicking on an icon or a menu
item. The main window is called the console window.

I Arithmetic expressions can be typed in the console window. If
the expresssion on a line is complete it is evaluated and the
result is printed.

> 5 - 1 + 10

[1] 14

> 7 * 10/2

[1] 35

> exp(-2.19)

[1] 0.1119167

> pi

[1] 3.141593

> sin(2 * pi/3)

[1] 0.8660254

Comments on the calculator usage

I The > symbol at the beginning of the input line is the prompt
from the application, not something that is typed by the user.

I If the expression typed is incomplete, say because it contains a
(without the corresponding) then the prompt changes to a +

indicating that more input is required.

I The expression [1] at the beginning of the response is an
index indicating that what follows is the first (and in these
cases the only) element of a numeric vector.

Assignment of values to names

I During a session, data objects can be assigned to names.

I The assignment operator is the two-character sequence <-.
(The = sign can also be used, except in a few cases.)

I The function ls lists the names of objects; rm removes objects.
An alternative to ls is ls.str() which lists objects in the
workspace and provides a brief description of their structure.

> x <- 5
> ls()

[1] "x"

> ls.str()

x : num 5

> rm(x)
> ls()

character(0)

Vectors

I Numeric objects are always stored as vectors (as opposed to
scalars).

I An easy way to create a non-trivial vector is a sequence,
generated by the : operator or the seq function.

I When results are printed the number in square brackets at the
beginning of the line is the index of the element at the start of
the line.

I Square brackets are used to specify indices (or, in general,
subsets).

> (x <- 0:19)

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> x[5]

[1] 4

> str(y <- x + runif(20, min = 10, max = 20))

num [1:20] 13.7 14.4 16.5 14.7 16.6 ...

Following the operations on the slides

I The lines of R code shown on these slides are available in files
on the course web site. The file for this section is called
1Intro.R.

I If you open this file in the R application (the File→Open

menu item or <ctrl>-O) and position the cursor at a
particular line, then <ctrl>-R will send the line to the console
window for execution and step to the next line.

I Any part of a line following a # symbol is a comment.

I The code is divided into named “chunks”, typically one chunk
per slide that contains code.

I In the system called Sweave used to generate the slides the
result of a call to a graphics function must be printed. In
interactive use this is not necessary but neither is it harmful.

I Note that R provides name completion with the <tab> key.
After typing part of a name you can use tab to request
completion.

Organizing data in R

I Standard rectangular data sets (columns are variables, rows
are observations) are stored in R as data frames.

I The columns can be numeric variables (e.g. measurements or
counts) or factor variables (categorical data) or ordered factor
variables. These types are called the class of the variable.

I The str function provides a concise description of the
structure of a data set (or any other class of object in R). The
summary function summarizes each variable according to its
class. Both are highly recommended for routine use.

I Entering just the name of the data frame causes it to be
printed. For large data frames use the head and tail

functions to view the first few or last few rows.

Data input

I The simplest way to input a rectangular data set is to save it
as a comma-separated value (csv) file and read it with
read.csv.

I The first argument to read.csv is the name of the file. On
Windows it can be tricky to get the file path correct
(backslashes need to be doubled). The best approach is to
use the function file.choose which brings up a “chooser”
panel through which you can select a particular file. The
idiom to remember is
> mydata <- read.csv(file.choose())

for comma-separated value files or
> mydata <- read.delim(file.choose())

for files with tab-delimited data fields.

I With an Internet connection you can use a URL (within
quotes) as the first argument to read.csv or read.delim.
(See question 1 in the first set of exercises)

In-built data sets

I One of the packages attached by default to an R session is the
datasets package that contains several data sets culled
primarily from introductory statistics texts.

I We will use some of these data sets for illustration.

I The Formaldehyde data are from a calibration experiment,
Insectsprays are from an experiment on the effectiveness of
insecticides.

I Use ? followed by the name of a function or data set to view
its documentation. If the documentation contains an example
section, you can execute it with the example function.

The Formaldehyde data
> str(Formaldehyde)

’data.frame’: 6 obs. of 2 variables:

$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9

$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

> summary(Formaldehyde)

carb optden

Min. :0.1000 Min. :0.0860

1st Qu.:0.3500 1st Qu.:0.3132

Median :0.5500 Median :0.4920

Mean :0.5167 Mean :0.4578

3rd Qu.:0.6750 3rd Qu.:0.6040

Max. :0.9000 Max. :0.7820

> Formaldehyde

carb optden

1 0.1 0.086

2 0.3 0.269

3 0.5 0.446

4 0.6 0.538

5 0.7 0.626

6 0.9 0.782

The InsectSprays data
> str(InsectSprays)

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

> summary(InsectSprays)

count spray

Min. : 0.00 A:12

1st Qu.: 3.00 B:12

Median : 7.00 C:12

Mean : 9.50 D:12

3rd Qu.:14.25 E:12

Max. :26.00 F:12

> head(InsectSprays)

count spray

1 10 A

2 7 A

3 20 A

4 14 A

5 14 A

6 12 A

Copying, saving and restoring data objects

I Assigning a data object to a new name creates a copy.

I You can save a data object to a file, typically with the
extension .rda, using the save function.

I To restore the object you load the file.

> sprays <- InsectSprays
> save(sprays, file = "sprays.rda")
> rm(sprays)
> ls.str()

x : int [1:20] 0 1 2 3 4 5 6 7 8 9 ...

y : num [1:20] 13.7 14.4 16.5 14.7 16.6 ...

> load("sprays.rda")
> names(sprays)

[1] "count" "spray"

Accessing and modifying variables

I The $ operator is used to access variables within a data frame.
> Formaldehyde$carb

[1] 0.1 0.3 0.5 0.6 0.7 0.9

I You can also use $ to assign to a variable name
> sprays$sqrtcount <- sqrt(sprays$count)
> names(sprays)

[1] "count" "spray" "sqrtcount"

I Assigning the special value NULL to the name of a variable
removes it.
> sprays$sqrtcount <- NULL
> names(sprays)

[1] "count" "spray"

Using with and within
I In complex expressions it can become tedious to repeatedly

type the name of the data frame.
I The with function allows for direct access to variable names

within an expression. It provides “read-only” access.
> Formaldehyde$carb * Formaldehyde$optden

[1] 0.0086 0.0807 0.2230 0.3228 0.4382 0.7038

> with(Formaldehyde, carb * optden)

[1] 0.0086 0.0807 0.2230 0.3228 0.4382 0.7038
I The within function provides read-write access to a data

frame. It does not change the original frame; it returns a
modified copy. To change the stored object you must assign
the result to the name.
> sprays <- within(sprays, sqrtcount <- sqrt(count))
> str(sprays)

’data.frame’: 72 obs. of 3 variables:

$ count : num 10 7 20 14 14 12 10 23 17 20 ...

$ spray : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

$ sqrtcount: num 3.16 2.65 4.47 3.74 3.74 ...

Data Organization

I Careful consideration of the data layout for experimental or
observational data is repaid in later ease of analysis. Sadly,
the widespread use of spreadsheets does not encourage such
careful consideration.

I If you are organizing data in a table, use consistent data types
within columns. Databases require this; spreadsheets don’t.

I A common practice in some disciplines is to convert
categorical data to 0/1 “indicator variables” or to code the
levels as numbers with a separate “data key”. This practice is
unnecessary and error-inducing in R. When you see categorical
variables coded as numeric variables, change them to factors
or ordered factors.

I Spreadsheets also encourage the use of a “wide” data format,
especially for longitudinal data. Each row corresponds to an
experimental unit and multiple observation occasions are
represented in different columns. The “long” format is
preferred in R.

Converting numeric variables to factors

I The factor (ordered) function creates a factor (ordered
factor) from a vector. Factor labels can be specified in the
optional labels argument.

I Suppose the spray variable in the InsectSprays data was
stored as numeric values 1, 2, . . . , 6. We convert it back to a
factor with factor.

> str(sprays <- within(InsectSprays, spray <- as.integer(spray)))

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: int 1 1 1 1 1 1 1 1 1 1 ...

> str(sprays <- within(sprays, spray <- factor(spray,
+ labels = LETTERS[1:6])))

’data.frame’: 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

Subsets of data frames

I The subset function is used to extract a subset of the rows or
of the columns or of both from a data frame.

I The first argument is the name of the data frame. The second
is an expression indicating which rows are to be selected.

I This expression often uses logical operators such as ==, the
equality comparison, or !=, the inequality comparison, >=,
meaning “greater than or equal to”, etc.
> str(sprayA <- subset(sprays, spray == "A"))

’data.frame’: 12 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

I The optional argument select can be used to specify the
variables to be included. There is an example of its use in
question 4 of the first set of exercises.

Subsets and factors

I The way that factors are defined, a subset of a factor retains
the original set of levels. Usually this is harmless but
sometimes it can cause unexpected results.

I You can “drop unused levels” by applying factor to the
factor. Many functions, such as xtabs, which is used to create
cross-tabulations, have optional arguments with names like
drop.unused.levels to automate this.

> xtabs(~spray, sprayA)

spray

A B C D E F

12 0 0 0 0 0

> xtabs(~spray, sprayA, drop = TRUE)

spray

A

12

Dropping unused levels in the spray factor and %in%

> str(sprayA <- within(sprayA, spray <- factor(spray)))

’data.frame’: 12 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...

> xtabs(~spray, sprayA)

spray

A

12

I Another useful comparison operator is %in% for selecting a
subset of the values in a variable.

> str(sprayDEF <- subset(sprays, spray %in% c("D", "E",
+ "F")))

’data.frame’: 36 obs. of 2 variables:

$ count: num 3 5 12 6 4 3 5 5 5 5 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 4 4 4 4 4 4 4 4 4 4 ...

“Long” and “wide” forms of data

I Spreadsheet users tend to store balanced data, such as
InsectSprays, across many columns. This is called the
“wide” format. The unstack function converts a simple
“long” data set to wide; stack for the other way.
> str(unstack(InsectSprays))

’data.frame’: 12 obs. of 6 variables:

$ A: num 10 7 20 14 14 12 10 23 17 20 ...

$ B: num 11 17 21 11 16 14 17 17 19 21 ...

$ C: num 0 1 7 2 3 1 2 1 3 0 ...

$ D: num 3 5 12 6 4 3 5 5 5 5 ...

$ E: num 3 5 3 5 3 6 1 1 3 2 ...

$ F: num 11 9 15 22 15 16 13 10 26 26 ...

I The problem with the wide format is that it only works for
balanced data. A designed experiment may produce balanced
data (although “Murphy’s Law” would indicate otherwise) but
observational data are rarely balanced.

I Stay with the long format (all the observations on all the units
are in a single column) when possible.

Using reshape

I The reshape function allows for more general translations of
long to wide and vice-versa. It is specifically intended for
longitudinal data.

I There is also a package called "reshape" with even more
general (but potentially confusing) capabilities.

I Phil Spector’s book, Data Manipulation with R (Springer,
2008) covers this topic in more detail.

Determining unique rows in a data frame

I One disadvantage of keeping data in the wide format is
redundancy and the possibility of inconsistency.

I In the first set of exercises you are asked to create a data
frame classroom from a csv file available on the Internet.
Each of the 1190 rows corresponds to a student in a
classroom in a school. There is one numeric “school level”
covariate, housepov.

I To check if housepov is stored consistently we select the
unique combinations of only those two columns

> str(unique(subset(classroom, select = c(schoolid, housepov))))

’data.frame’: 107 obs. of 2 variables:

$ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ housepov: num 0.082 0.082 0.086 0.365 0.511 0.044 0.148 0.085 0.537 0.346 ...

Working with NA’s

I Missing data are represented in R as NA.

I The important thing to know about NAs is that they
propagate. Except for certain detector functions (is.na,
is.finite) any operation on an NA returns an NA.

> (x <- c(10, 20, NA, 4, NA, 2))

[1] 10 20 NA 4 NA 2

> sum(x)

[1] NA

> is.na(x)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

> sum(x[!is.na(x)])

[1] 36

The na.rm argument in summary functions

I Many summary functions have an optional argument na.rm.
When TRUE the function is applied to the non-missing data
only.

I The na.rm argument does remove NaNs but does not remove
Infs or -Infs.

> sum(x, na.rm = TRUE)

[1] 36

> (x <- c(0, 1, NA, 0/0, Inf))

[1] 0 1 NA NaN Inf

> sum(x, na.rm = TRUE)

[1] Inf

Saving workspaces

I When you exit an R session (the function call q(), including
the parentheses, or the menu option or <ctrl>-Q) you are
given the option of saving the workspace.

I If you do save it, the workspace will be restored when you
start R again in that directory.

I Different people have different approaches to saving
workspaces. I never do it. I always save the data objects that
I may need later and/or the code that generates them.
Frequently on a large project I just have one copy of the data
set and many, many scripts to manipulate it.

I For me the problem with saving and restoring workspaces is
that I’m not starting from a known and reproducible state in a
new session.

Summary of data input and manipulation

I Rectangular data sets are stored in data frames. Typically
columns are numeric vectors or factors but other types (Dates,
date/times) are possible.

I The easiest input functions are read.csv and read.delim.

I Use str and summary frequently.

I Use subset for extracting parts of a data frame, with for
read-only access to variables and within for read-write access.

I Store categorical variables as factors.

