Mixed models in R using the Ime4 package

 Part 6: InteractionsDouglas Bates

University of Wisconsin - Madison
and R Development Core Team
<Douglas. Bates@R-project.org>
Max Planck Institute for Ornithology
Seewiesen
July 21, 2009

Interactions of covariates and grouping factors

- For longitudinal data, having a random effect for the slope w.r.t. time by subject is reasonably easy to understand.
- Although not generally presented in this way, these random effects are an interaction term between the grouping factor for the random effect (Subject) and the time covariate.
- We can also define interactions between a categorical covariate and a random-effects grouping factor.
- Different ways of expressing such interactions lead to different numbers of random effects. These different definitions have different levels of complexity, affecting both their expressive power and the ability to estimate all the parameters in the model.

Interactions with grouping factors

The Machines data

Scalar interactions or vector-valued random effects?

The brain activation data

Considering differences

Fixed-effects for the animals

Summary

Machines data

- Milliken and Johnson (1989) provide (probably artificial) data on an experiment to measure productivity according to the machine being used for a particular operation.
- In the experiment, a sample of six different operators used each of the three machines on three occasions - a total of nine runs per operator.
- These three machines were the specific machines of interest and we model their effect as a fixed-effect term.
- The operators represented a sample from the population of potential operators. We model this factor, (Worker), as a random effect.
- This is a replicated "subject/stimulus" design with a fixed set of stimuli that are themselves of interest. (In other situations the stimuli may be a sample from a population of stimuli.)

Machines data plot

Random effects for subject and subject:stimulus

- There are obvious differences between the scores on different machines.
- It seems likely that Worker will be a significant random effect, especially when considering the low variation within replicates.
- There also appears to be a significant Worker:Machine interaction. Worker 6 has a very different pattern w.r.t. machines than do the others.
- We can approach the interaction in one of two ways: define simple, scalar random effects for Worker and for the Worker:Machine interaction or define vector-valued random effects for Worker

Characteristics of the scalar interaction model

- The model incorporates simple, scalar random effects for Worker and for the Worker:Machine interaction.
- These two scalar random-effects terms have $q_{1}=q_{2}=1$ so they contribute $n_{1}=6$ and $n_{2}=18$ random effects for a total of $q=24$. There are 2 variance-component parameters.
- The random effects allow for an overall shift in level for each worker and a separate shift for each combination of worker and machine. The unconditional distributions of these random effects are independent. The unconditional variances of the interaction random effects are constant.
- The main restriction in this model is the assumption of constant variance and independence of the interaction random effects.

- Because we know these are scalar random effects we can recognize the pattern of a balanced, nested, two-factor design, similar to that of the model for the Pastes data.

Vector-valued random effects by subject

Comparing the model fits

- Although not obvious from the specifications, these model fits are nested. If the variance-covariance matrix for the vector-valued random effects has a special form, called compound symmetry, the model reduces to model fm 1 .
- The p-value of 6.5% may or may not be significant.

```
>fm2M <- update(fm2, REML = FALSE)
> fm1M <- update(fm1, REML = FALSE)
> anova(fm2M, fm1M)
```

```
Data: Machines
Models:
fm1M: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)
fm2M: score ~ Machine + (0 + Machine | Worker)
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm1M 6 237.27 249.20 -112.64
fm2M 10 236.42 256.31 -108.21 8.8516 4 % 4 0.06492
```

- In a case like this we may want to check if a single, unusual combination (Worker 6 using Machine " B ") causes the more complex model to appear necessary. We eliminate that unusual combination.
> Machines1 <- subset(Machines, !(Worker == "6" \& Machine == $+\quad$ "B")
> xtabs(${ }^{\sim}$ Machine + Worker, Machines1)

Worker

Machine 123456
A 333333
B 333330
C 333333

Trade-offs when defining interactions

- It is important to realize that estimating scale parameters (i.e. variances and covariances) is considerably more difficult than estimating location parameters (i.e. means or fixed-effects coefficients).
- A vector-valued random effect term having q_{i} random effects per level of the grouping factor requires $q_{i}\left(q_{i}+1\right) / 2$ variance-covariance parameters to be estimated. A simple, scalar random effect for the interaction of a "random-effects" factor and a "fixed-effects" factor requires only 1 additional variance-covariance parameter.
- Especially when the "fixed-effects" factor has a moderate to large number of levels, the trade-off in model complexity argues against the vector-valued approach.
- One of the major sources of difficulty in using the lme4 package is the tendency to overspecify the number of random effects per level of a grouping factor.

Brain activation data from West, Welch and Gałecki (2007)

- In the experiment seven different regions of five rats' brains were imaged in a basal condition (after injection with saline solution) and after treatment with the drug Carbachol. The data provided are from three regions.
- This representation of the data is similar to the figure on the cover of West, Welch and Gatecki (2007).

Reproducing the models from West et al.

- These data are analyzed in West et al. (2007) allowing for main effects for treatment and region, a fixed-effects interaction of these two factors and vector-valued random effects for the intercept and the treatment by animal.
- Note that this will require estimating three variance component parameters from data on five animals.
- Their final model also allowed for different residual variances by treatment. We won't discuss that here.
- We choose the order of the levels of region to produce the same parameterization of the fixed effects.
'data.frame': 30 obs. of 4 variables:
\$ animal : Factor w/ 5 levels "R100797", "R100997",..: 4444445
\$ treatment: Factor w/ 2 levels "Basal", "Carbachol": 111222111
\$ region : Factor w/ 3 levels "VDB", "BST", "LS": 2312312312
\$ activate : num 366199187372302 ...

Brain activation data in an alternative layout

- The animals have similar patterns of changes but different magnitudes.

Model 5.1 from West et al.

Linear mixed model fit by REML
Formula: activate \sim region $*$ treatment $+(1 \mid$ animal)
Data: ratbrain
AIC BIC logLik deviance REMLdev
291.3 302.5-137.6
Random effects:
Groups Name
animal (Intercept)
Residual
Rariance Std.Dev.
Number of obs: 30, groups: animal, 5

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	212.29	38.21	5.556
regionBST	216.21	31.31	6.906
regionLS	25.45	31.31	0.813
treatmentCarbachol	360.03	31.31	11.500
regionBST:treatmentCarbachol	-261.82	44.27	-5.914
regionLS:treatmentCarbachol	-162.50	44.27	-3.670

Model 5.2 from West et al.

Linear mixed model fit by REML
Formula: activate ~ region * treatment + (treatment | animal) Data: ratbrain
AIC BIC logLik deviance REMLdev
269.2 283.2 -124.6 $292.7 \quad 249.2$

Random effects:

Groups	Name	Variance	Std.Dev. Corr	
animal	(Intercept)	1284.3	35.837	
	treatmentCarbachol	6371.3	79.821	0.801
Residual		538.9	23.214	

Number of obs: 30, groups: animal, 5
Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	212.29	19.10	11.117
regionBST	216.21	14.68	14.726
regionLS	25.45	14.68	1.733
treatmentCarbachol	360.03	38.60	9.328
regionBST:treatmentCarbachol	-261.82	20.76	-12.610
regionLS:treatmentCarbachol	-162.50	20.76	-7.826

A variation on model 5.2 from West et al.

Linear mixed model fit by REML
Formula: activate \sim region $*$ treatment $+(0+$ treatment \mid animal $)$ Data: ratbrain
AIC BIC logLik deviance REMLdev
269.2 283.2 -124.6 $292.7 \quad 249.2$

Random effects:

Groups	Name	Variance	Std.Dev. Corr	
animal	treatmentBasal	1284.3	35.837	
	treatmentCarbachol	12238.1	110.626	0.902
Residual		538.9	23.214	

Residual $538.9 \quad 23.214$
Number of obs: 30, groups: animal, 5
Fixed effects:

(Intercept)	212.29	19.10	11.117
regionBST	216.21	14.68	14.726
regionLS	25.45	14.68	1.733
treatmentCarbachol	360.03	38.60	9.328
regionBST:treatmentCarbachol	-261.82	20.76	-12.610
regionLS:treatmentCarbachol	-162.50	20.76	-7.826

Prediction intervals for the random effects

Is this "overmodeling" the data?

- The prediction intervals for the random effects indicate that the vector-valued random effects are useful, as does a model comparison.
Data: ratbrain
Models:
m51M: activate ~ region * treatment + (1 | animal) m52M: activate ~ region * treatment + (treatment | animal)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
m51M $\quad 8 \quad 341.34 \quad 352.55-162.67$

m52M	10	312.72	326.73	-146.36	32.615	2

- However, these models incorporate many fixed-effects parameters and random effects in a model of a relatively small amount of data. Is this too much?
- There are several ways we can approach this:
- Simplify the model by considering the difference in activation under the two conditions within the same animal:region combination (i.e. approach it like a paired t-test).
- Model the five animals with fixed effects and use F-tests.
- Assess the precision of the variance estimates (done later).

Checking for balanced and unreplicated; tabling activate

- We saw the balance in the data plots but we can check too > ftable(xtabs(~treatment + region + animal, ratbrain))
animal R100797 R100997 R110597 R111097 R111397

treatment	region					
Basal	VDB	1	1	1	1	1
	BST	1	1	1	1	1
	LS	1	1	1	1	1
Carbachol	VDB	1	1	1	1	1
	BST	1	1	1	1	1
	LS	1	1	1	1	1

In xtabs we can use a two-sided formula to tabulate a variable > ftable(atab <- xtabs(activate \sim treatment + animal + $+\quad$ region, ratbrain))
region VDB BST LS

| treatment animal | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Basal | R100797 | 237.42 | 458.16 | 245.04 |
| | R100997 | 195.51 | 479.81 | 261.19 |
| | R110597 | 262.05 | 462.79 | 278.33 |
| | R111097 | 187.11 | 366.19 | 199.31 |
| | R111397 | 179.38 | 375.58 | 204.85 |
| Carbachol | R100797 | 726.96 | 664.72 | 587.10 |

- Before we can analyze the differences at each animal:region combination we must first calculate them.
- We could do this by subsetting the ratbrain data frame for the "Basal" and "Carbachol" levels of the treatment factor and forming the difference of the two activate columns. For this to be correct we must have the same ordering of levels of the animal and region factors in each half. It turns out we do but we shouldn't count on this (remember "Murphy's Law"?).
- A better approach is to reshape the data frame (but this is complicated) or to use xtabs to align the levels. First we should check that the data are indeed balanced and unreplicated.

Taking differences

- The atab object is an array with additional attributes xtabs $[1: 2,1: 5,1: 3] 237727196604262 \ldots$
- attr(*, "dimnames")=List of 3
..\$ treatment: chr [1:2] "Basal" "Carbachol"
..\$ animal : chr [1:5] "R100797" "R100997" "R110597" "R111097"
..\$ region : chr [1:3] "VDB" "BST" "LS"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- $\operatorname{attr}(*$, "call") $=$ language xtabs(formula = activate \sim treatment.
- Use apply to take differences over dimension 1
> (diffs <- as.table(apply(atab, 2:3, diff)))

region			
animal	VDB	BST	LS
R100797	489.54	206.56	342.06
R100997	408.78	35.48	176.37
R110597	359.02	126.46	215.60
R111097	262.59	5.52	102.71
R111397	280.20	117.00	150.89

Taking differences (cont'd)

- Finally, convert the table of differences to a data frame.
> str (diffs <- as.data.frame(diffs))
'data.frame': 15 obs. of 3 variables:
\$ animal: Factor w/ 5 levels "R100797", "R100997",..: 1223451234
\$ region: Factor w/ 3 levels "VDB", "BST","LS": 1111122222 ..
\$ Freq : num 490409359263280 ...
> names (diffs) [3] <- "actdiff"

Using fixed-effects for the animals

- There are five experimental units (animals) in this study. That is about the lower limit under which we could hope to estimate variance components.
- We should compare with a fixed-effects model.
- If we wish to evaluate coefficients for treatment or region we must be careful about the "contrasts" that are used to create the model. However, the analysis of variance table does not depend on the contrasts.
- We use aov to fit the fixed-effects model so that a summary is the analysis of variance table.
- The fixed-effects anova table is the sequential table with main effects first, then two-factor interactions, etc. The anova table for an lmer model gives the contributions of the fixed-effects after removing the contribution of the random effects, which include the animal:treatment interaction in model m52.

A model for the differences

Correlation of Fixed Effects: (Intr) rgnBST
regionBST -0.317
regionLS -0.317 0.500

Fixed-effects anova versus random effects

```
> summary(m52f <- aov(activate ~ animal * treatment +
+ region * treatment, ratbrain))
    Df Sum Sq Mean Sq F value Pr(>F)
animal 4 126197 31549 58.544 2.376e-09
treatment 1 358347 358347 664.965 1.844e-14
region 2 100998 50499 93.708 1.465e-09
animal:treatment 4 40384 10096 18.734 6.973e-06
treatment:region 2 87352 43676 81.047 4.244e-09
Residuals 16 8622 539
> anova(m52)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
\begin{tabular}{lrrrr} 
region & 2 & 100998 & 50499 & 93.708 \\
treatment & 1 & 18900 & 18900 & 35.072
\end{tabular}
region:treatment \(2-87352 \quad 43676-81.047\)
```

- Except for the treatment factor, the anova tables are nearly identical.
- It is possible to fit complex models to balanced data sets from carefully designed experiments but one should always be cautious of creating a model that is too complex.
- I prefer to proceed incrementally, taking time to examine data plots, rather than starting with a model incorporating all possible terms.
- Some feel that one should be able to specify the analysis (and, in particular, the analysis of variance table) before even beginning to collect data. I am more of a model-builder and try to avoid dogmatic approaches.
- For the ratbrain data I would be very tempted to take differences and analyze it as a randomized blocked design.

