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Introduction

Population pharmacokinetics data are often modeled using nonlinear
mixed-effects models (NLMMs).

These are nonlinear because pharmacokinetic parameters - rate
constants, clearance rates, etc. - occur nonlinearly in the model
function.

In statistical terms these are mixed-effects models because they
involve both fixed-effects parameters, applying to the entire
population or well-defined subsets of the population, and random
effects associated with particular experimental or observational units
under study.

Many algorithms for obtaining parameter estimates, usually the
maximum likelihood estimates (MLEs), for such models have been
proposed and implemented.

Comparing different algorithms is not easy. Even understanding the
definition of the model and the proposed algorithm is not easy. We
begin by defining the model.
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Theophylline pharmacokinetics
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These are serum concentration profiles for 12 volunteers after
injestion of an oral dose of Theophylline, as described in Pinheiro and
Bates (2000).
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Modeling pharmacokinetic data with a nonlinear model

These are longitudinal repeated measures data.

For such data the time pattern of an individual’s response is
determined by pharmacokinetic parameters (e.g. rate constants) that
occur nonlinearly in the expression for the expected response.

The form of the nonlinear model is determined by the
pharmacokinetic theory, not derived from the data.

d · ke · ka · C
e−ket − e−kat

ka − ke

These pharmacokinetic parameters vary over the population. We wish
to characterize typical values in the population and the extent of the
variation.

Thus, we associate random effects with the parameters, ka, ke and C
in the nonlinear model.
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Linear and nonlinear mixed-effects models

For both linear and nonlinear mixed-effects models, we consider the
n-dimensional response random variable, Y , whose value, y, is
observed, and the q-dimensional, unobserved random effects variable,
B.

In the models we will consider B ∼ N (0,Σθ). The
variance-covariance matrix Σθ can be huge but it is completely
determined by a small number of variance-component parameters, θ.

The conditional distribution of the response, Y , is

(Y |B = b) ∼ N
(
µY|B, σ

2In
)

The conditional mean, µY|B, depends on b and on the fixed-effects
parameters, β, through a linear predictor expression, Zb+Xβ.

For a linear mixed model (LMM), µY|B is exactly the linear predictor.
For an NLMM the linear predictor determines the parameter values in
the nonlinear model function which then determines the mean.
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Transforming to orthogonal random effects

We never really form Σθ; we always work with the relative covariance
factor, Λθ, defined so that

Σθ = σ2ΛθΛ
ᵀ
θ .

Note that we must allow for Λθ to be less that full rank.

We define a q-dimensional “spherical” or “unit” random-effects
vector, U , such that

U ∼ N
(
0, σ2Iq

)
, B = Λθ U ⇒ Var(B) = σ2ΛθΛ

ᵀ
θ = Σθ.

Setting Uθ = ZΛθ, the linear predictor expression becomes

Zb+Xβ = ZΛθ u+Xβ = Uθ u+Xβ.

Douglas Bates (U.Wisc) Nonlinear mixed models August 6, 2009 9 / 14



The conditional mode, ũθ,β

Although the probability model is defined from (Y |U = u), we
observe y, not u (or b) so we want to work with the other conditional
distribution, (U |Y = y).

The joint distribution of Y and U is Gaussian with density

fY,U (y,u) = fY|U (y|u) fU (u)

=
exp(− 1

2σ2 ‖y − µY|U‖2)
(2πσ2)n/2

exp(− 1
2σ2 ‖u‖2)

(2πσ2)q/2

=
exp(−

[
‖y − µY|U‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2

The mode, ũθ,β, of the conditional distribution (U |Y = y) (also the
mean in this case of an LMM) is

ũθ,β = arg min
u

[∥∥y − µY|U
∥∥2 + ‖u‖2

]
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Minimizing a penalized sum of squared residuals

An expression like
∥∥y − µY|U

∥∥2 + ‖u‖2 is called a penalized sum of

squared residuals because
∥∥y − µY|U

∥∥2
is a sum of squared residuals

and ‖u‖2 is a penalty on the size of the vector u.

Determining ũθ,β as the minimizer of this expression is a penalized
least squares (PLS) problem. For an LMM it is a penalized linear least
squares problem that can be solved directly (i.e. without iterating).
For an NLMM it is a penalized nonlinear least squares problem.

One way to determine the solution in an LMM is to rephrase it as a
linear least squares problem for an extended residual vector

ũθ,β = arg min
u

∥∥∥∥[y −Xβ0

]
−
[
Uθ
Iq

]
u

∥∥∥∥2

This is sometimes called a pseudo-data approach because we create
the effect of the penalty term, ‖u‖2, by adding “pseudo-observations”
to y and to the predictor.
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The profiled deviance for LMMs
We can see that ũθ,β satisfies

(
Uᵀ
θUθ + Iq

)
ũθ,β = Uᵀ

θ (y −Xβ)
which we solve using the sparse Cholesky decomposition

LθL
ᵀ
θ = P

(
Uᵀ
θUθ + Iq

)
P ᵀ

P is a permutation matrix that has practical importance but does not
affect the theory. The matrix Lθ is the sparse, lower-triangular factor.
Let r2(θ,β) be the minimum penalized residual sum of squares, then
`(θ,β, σ|y) = logL(θ,β, σ|y) can be written

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)
σ2

+ log(|Lθ|2)

The conditional estimate of σ2 is

σ̂2(θ,β) =
r2(θ,β)

n
producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
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Profiling the deviance with respect to β for LMMs

In a LMM the deviance depends on β only through r2(θ,β) we can
obtain the conditional estimate, β̂θ, by extending the PLS problem to

r2(θ) = min
u,β

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
with the solution satisfying the equations[

Uᵀ
θUθ + Iq Uᵀ

θX
XᵀUθ XᵀX

] [
ũθ
β̂θ

]
=
[
Uᵀ
θ y

Xᵀy.

]
The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ)

n

)]
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